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The response rate of most anti-cancer drugs is limited because of the high heterogeneity of cancer and the

complex mechanism of drug action. Personalized treatment that stratifies patients into subgroups using

molecular biomarkers is promising to improve clinical benefit. With the accumulation of preclinical models

and advances in computational approaches of drug response prediction, pharmacogenomics has made

great success over the last 20 years and is increasingly used in the clinical practice of personalized cancer

medicine. In this article, we first summarize FDA-approved pharmacogenomic biomarkers and large-scale

pharmacogenomic studies of preclinical cancer models such as patient-derived cell lines, organoids, and

xenografts. Furthermore, we comprehensively review the recent developments of computational methods

in drug response prediction, covering network, machine learning, and deep learning technologies and

strategies to evaluate immunotherapy response. In the end, we discuss challenges and propose possible

solutions for further improvement.

Copyright © 2021, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cancer is a highly complex disease, including not only intra-tumor

heterogeneity but also inter-tumor heterogeneity. Although cancer

treatments such as chemotherapy, targeted therapy, and immuno-

therapy significantly improve clinical efficacy, a part of patients suf-

fers partial response or no response due to the heterogeneity and

complexity of tumor and microenvironment (Sharma et al., 2011). The

average response rate for FDA-approved cancer drugs from 2006 to

2018 indication is only around 40%, which varies from 20% to 60%

for different patient subpopulations (Chen et al., 2019). Therefore, it is

important to identify the associations between molecular features

and drug response, discover novel predictive biomarkers, and esti-

mate drug response to guide personalized medicine. Large-scale

pharmacogenomic screening of preclinical models has been per-

formed to represent the heterogeneous responses of cancer pa-

tients. Accumulation of drug sensitivity andmulti-omics data makes it

possible to apply computational methods to identify gene-drug as-

sociations andmake the prediction. Many researchers have put effort
f Genetics and Developmental Bio
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into developing computational methods. However, finding predictive

biomarkers from numerous genes is still complicated due to the

relatively small sample size and the high dimension of data. Pre-

dicting drug response is an even more challenging task. Here, we

review the clinical applications of pharmacogenomic biomarkers, the

data resources for pharmacogenomic screening and molecular

omics, the utility of computational approaches to build drug response

prediction models to aid in patient stratification, and discuss the

challenges in pharmacogenomics development.
FDA-approved pharmacogenomic biomarkers for cancer

therapy

The core of personalized cancer treatment is patient stratification

based on predictive pharmacogenomic biomarkers. The efficacy of

biomarker candidates needs to be evaluated by clinical trials. Basket

trials investigate the effect of common biomarkers in a variety of

cancers, while umbrella trials enroll patients with one cancer type and

test different exploratory biomarkers (Park et al., 2020). We sys-

tematically collected and manually curated biomarkers from the list

of FDA-approved drugs whose labels include pharmacogenomic

information (U.S. Food and Drug Administration, 2020). Up till June
logy, Chinese Academy of Sciences, and Genetics Society of China. Published by
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2020, there are 47 biomarkers associated with the effective re-

sponses of 75 anti-cancer drugs or combinations involving 25 cancer

types or subtypes (Table 1). Thesemolecular biomarkers can be used

as guidelines on clinical medicine decisions with more suitable

treatments for patients. Most of the biomarkers are germline or so-

matic variants, while a few of them are chromosomal abnormalities or

protein expression differences. Some biomarkers are unique to one

type of cancer, while others are applicable to multiple cancer types.

Drugs with the same target genes or mechanism of action tend to

share the same biomarkers. Many biomarkers belong to target genes

or genes in the action pathways of drugs.

Take gefitinib, a targeted therapy drug for lung cancer, as an

example. The effective rate of gefitinib was only 20%e30% by 2002.

Till 2005, researchers found that EGFR mutation is a sensitive

biomarker for gefitinib. Patients with EGFR mutation are more likely

to benefit from gefitinib, with a response rate of around 65% and an

overall survival time above 30 months (Han et al., 2005). Microsat-

ellite instability (MSI)/mismatch repair deficiency (dMMR) and tumor

mutational burden (TMB) have been approved as response indicators

to PD-1 inhibitors such as pembrolizumab (U.S. Food and Drug

Administration, 2020). Patients with MSI-high/dMMR or high TMB

show significantly higher overall response rates and longer

progression-free survival in various solid tumors treated with PD-1

inhibitors (Boyiadzis et al., 2018). In summary, patient stratification

based on predictive molecular biomarkers can greatly improve the

response rates of drugs for a certain patient subpopulation and

promote the development of precision medicine. However, only 75

out of 292 FDA-approved anti-neoplastic agents (derived from

DrugBank [Wishart et al., 2018]) have predictive biomarkers in the

drug labeling. The finding of new biomarkers for personalized med-

icine have become an important research direction.

Large-scale pharmacogenomic resources

In addition to FDA-approved pharmacogenomic biomarkers,

gene-drug associations as biomarker candidates can be identified

from large-scale preclinical pharmacogenomic datasets. Patient-

derived cancer cell lines, organoids, and xenografts (PDXs) are

commonly used as preclinical cancer models for drug screening,

biomarker identification, and drug response prediction (Fig. 1A).

Cancer cell lines are a population of cells propagated in two-

dimension in vitro culture; Organoids are three-dimension cultured

models composed of multiple cells to mimic the architectures and

functions of original tumors; PDXs are generated by transplanting

patient-derived tumor tissues into immunodeficient mice (Ibarrola-

Villava et al., 2018). The histology, genomics, transcriptome, and

other characteristics of the patient’s tumors can be retained in the

above cancer models to some extent.

With the development of experimental technologies, the

success rates of establishing preclinical cancer models have been

improved, and a growing number of large-scale platforms of cancer

models have been established (Shoemaker, 2006; Conte et al., 2019;

Ghandi et al., 2019; Bock et al., 2021) (Fig. 1B and 1C; Table S2).

Each model may be characterized by multiple molecular profiles

such as gene expression, somatic mutations, copy number variations

(CNV), alternative splicing, miRNA expression, chromatin profile,

DNA methylation, and proteome (Fig. 1B). High-throughput drug

screening (HTS) enables simultaneously testing the efficacy of

dozens of drugs against different cancer models. Drug responses

can be measured by quantitative indexes: IC50 (half maximal inhib-

itory concentration), EC50 (concentration for 50% of maximal effect),

and AUC (Area under the dose-response curve) calculated from

response-curves of cell lines or organoids; tumor growth inhibition

rate calculated by comparing the tumor volume of the treatment

group with the control group of PDXs. Combining both drug
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responses and molecular characteristics makes it possible to identify

drug-gene associations and construct computational models to es-

timate drug response. We will depict the progress of representative

pharmacogenomic researches using three kinds of preclinical cancer

models, respectively (Fig. 1B and 1C).

Cancer cell lines

Pan-cancer high-throughput drug screens are majorly performed

on cancer cell lines. The NCI-60 Human Tumor Cell Lines Screen

(NCI60) has been established since 1990, which evaluated growth

inhibition for more than 52,000 small molecules (synthetic or purified

natural products) on 60 cancer cell lines from nine different tissue

types (Shoemaker, 2006). The relatively small sample size may affect

the accuracy and reliability when applying NCI60 in pharmacoge-

nomic studies. The Cancer Cell Line Encyclopedia (CCLE) (Ghandi

et al., 2019), the Cancer Therapeutics Response Portal (CTRP)

(Basu et al., 2013), and the Genomics of Drug Sensitivity in Cancer

(GDSC) (Yang et al., 2013) were set up to contain more cell lines and

cover diverse tumor types. CCLE provides molecular profiling data of

1457 cancer cell lines covering over 40 cancer types, which contains

gene expression profiles from microarray and RNA sequencing

methods, gene mutations, copy number variants, DNA methylations,

gene fusion calls, structural variation, chromatin profiles and reverse-

phase protein array (RPPA) data, as well as short hairpin RNA

knockdown and CRISPR-Cas9 knockout data. Moreover, CCLE

generated pharmacological profiles for 24 anticancer drugs across

479 cell lines. CTRP V1 quantitatively measured the sensitivity of

242 cell lines to 185 small molecules; CTRP V2 measured the

sensitivity of 860 cancer cell lines to 481 small molecules. The mo-

lecular data of cell lines in CTRP can be obtained from CCLE. The

GDSC collection comprises over 1000 tumor cell lines, ~60% of

which are overlapped with CCLE. GDSC V1 dataset contains dose-

response results for 367 compounds on 987 diverse cancer cell lines.

GDSC V2 provides 198 compounds on 809 cancer cell lines where

some experiments from GDSC V1 have been repeated with

advanced equipment and procedures.

In addition to the prominent resources discussed above, other

research institutes and companies also undertook independent drug

screen projects. Institute for Molecular Medicine Finland generated

drug response and molecular profiling data covering 106 drugs and

308 cancer cell lines (Mpindi et al., 2016). GlaxoSmithKline per-

formed high-throughput drug screening for 19 drugs on 311 cancer

cell lines and analyze the relationship between drug response and

oncogenic patterns (Greshock et al., 2010). The Genentech Cell Line

Screening Initiative produced pharmacogenomic profiling with 16

drugs and 410 cancer cell lines (Haverty et al., 2016). XenoBase

provided drug response data of 11 compounds on 707 cancer cell

lines and linked with genetic profiles (Crown Bioscience Inc., 2021).

Pan-cancer pharmacogenomics datasets are helpful to obtain a

large sample size and increase statistical power, but they ignore the

distinctive molecular features among different cancer types. In order

to address this problem, some studies perform drug screening for

cell lines from a specific cancer type. Heiser et al. (2012) screened 77

therapeutic compounds on more than fifty breast cancer lines to

discover responses mechanism in subtype, pathway, and genomic

aberration levels, respectively. Daemen et al. (2013) tested for 138

compounds on 70 breast cancer cells and constructed a machine

learning model to identify predictive genetic signatures of therapeutic

response. The National Cancer Institute (NCI) also provided cancer-

specific pharmacogenomic screening datasets to help identify drug

response-related genetic patterns. For example, the small cell lung

cancer (SCLC) project generated pharmacogenomic data of 70

SCLC cell lines to 526 compounds (Polley et al., 2016); similarly, the

sarcoma project targeted 445 compounds and 64 cell lines (Teicher



Table 1

FDA-approved pharmacogenomic biomarkers in the labeling of anti-cancer drugs (up to 2020).

Cancer Types Biomarkers Drugs

ALL BCR-ABL1 Dasatinib; Imatinib; Ponatinib

ALL (r) BCR-ABL1 (�) Vincristine*
AML CD33 exp Gemtuzumab Ozogamicin

FLT3 mut Midostaurin and chemotherapy

IDH1 mut Ivosidenib

IDH2 mut Enasidenib

AML (r/r) FLT3 mut Gilteritinib

APL t(15; 17) translocation; PML/RARA exp Arsenic trioxide; Tretinoin

BRCA HER (þ) Trastuzumab

BRCA (a/m) HER (þ) Lapatinib; Trastuzumab; Paclitaxel and Trastuzumab; Tucatinib and

Trastuzumab and Capecitabine; Pertuzumab and Trastuzumab and

Docetaxel; Neratinib and Capecitabine*
HR (þ) Fulvestrant; Anastrozole*, Letrozole*
HR (þ), HER2 (�) Fulvestrant; Fulvestrant and Palbociclib; Fulvestrant and Abemaciclib;

Fulvestrant and Ribociclib; Abemaciclib*; Everolimus*; Everolimus and

Exemestane*; Verolimus and Exemestane*
HR (þ), HER2 (�), PIK3CA mut Alpelisib and Fulvestrant

BRCA (e) HER (þ) Pertuzumab and Trastuzumab and Chemotherapy; Neratinib;

Exemestane*
HR (þ) Letrozole*

BRCA (m) ER-positive Tamoxifen

Germline BRCA mut, HER2 (�) Olaparib*, Talazoparib*
CEL FIP1L1-PDGFRa fusion Imatinib

CHOL (a/m) FGFR2 fusion; FGFR2 rearrangement Pemigatinib

CLL CD20 (þ) Rituximab and fludarabine and cyclophosphamide

CLL; SLL 17p deletion Ibrutinib*
CML BCR-ABL1 Bosutinib; Dasatinib; Imatinib; Nilotinib; Ponatinib

CRC (m) EGFR exp, wt-RAS Cetuximab; Panitumumab

CRC (m) MSI-H or dMMR Ipilimumab and Nivolumab*
CRPC HRR gene muts Olaparib*
CTCL (p/r) CD25 exp Denileukin diftitox

GEP-NETs SSTR-positive Lutetium Dotatate Lu-177

GISTs KIT exp Imatinib

GISTs (u/m) PDGFRA Exon 18 mut Avapritinib

MTC (m) RET mut Selpercatinib

NHL CD20 (þ) Rituximab

NSCLC (m) ALK rearrangement Alectinib; Brigatinib; Ceritinib; Crizotinib; Lorlatinib

EGFR exon 19 deletions; L858R substitution Dacomitinib; Erlotinib; Gefitinib; Osimertinib; Ramucirumab*
EGFR mut Afatinib

EGFR T790M mut Osimertinib

MET exon 14 skipping Capmatinib

PD-L1 exp, no EGFR or ALK aberrations Pembrolizumab*
PD-L1 exp, no EGFR or ALK aberrations Atezolizumab; Ipilimumab and Nivolumab

ROS1 rearrangement Entrectinib; Crizotinib*, Lorlatinib*
NSCLC (m); ATC (m) BRAF V600E mut Dabrafenib and Trametinib

RET fusion Selpercatinib

OV (a) HRD Niraparib*; Bevacizumab and Olaparib*
OV; CRPC (m) BRCA mut Rucaparib*
OV; PAAD (m) BRCA mut Olaparib*
sALCL CD30 exp Brentuximab Vedotin

SKCM, (u/m) BRAF V600E mut Dabrafenib; Vemurafenib; Encorafenib and Cetuximab

BRAF V600E or V600K mut Binimetinib and Encorafenib; Cobimetinib and Vemurafenib; Dabrafenib

and Trametinib

Solid Tumors MSI-H or dMMR; TMB-H Pembrolizumab*
NTRK fusion Larotrectinib; Entrectinib

UCC FGFR3 or FGFR2 genetic alterations Erdafitinib

UCC; TNBC (u/m) PD-L1 exp Atezolizumab

UCEC (a) not MSI-H/dMMR Lenvatinib and Pembrolizumab*

1) Information was manually collected from the US FDA Table of Pharmacogenomic Biomarkers in Drug Labeling (Last Updated: 06/2020). 2) Cancer types full names and ab-

breviations display in Table S1; cancer status or stages: r/r, relapsed/refractory; m, metastatic; a, advanced; e, early; p/r, persistent/recurrent; u/m, unresectable/metastatic. 3)

Biomarkers: semicolon and comma represent logic representations “or” and “and,”, representatively; (þ) and (�) denote “positive” and “negative”; mut, mutation; exp, expression;

MSI-H, microsatellite instability-high; dMMR, mismatch repair deficiency; HRR, homologous recombination repair; HRD, homologous recombination deficiency; TMB-H, tumor

mutational burden-high; HER2-positive, HER2 protein overexpression or HER2 gene amplification; wild-type RAS, the status of “absence of a RAS mutation in exon 2 (codons 12

and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146) of both KRAS and NRAS”. 4) Drugs: Targeted genes were collected from Drugbank database; asterisk

indicates biomarkers of drugs are not included in their targeted genes; drugs separated by a semicolon; “and” were used to present combinational therapy.
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et al., 2015). The Liver Cancer Model Repository provides drug

sensitivity data of 90 compounds on 81 liver cancer cell lines to

screen drug-gene associations and discover predictive biomarkers

(Qiu et al., 2019). Similar large-scale drug response screening has

also been performed on cancer such as lung cancer (LC), colon

cancer (CRC), head and neck squamous cell carcinoma (HNSCC),
542
glioblastoma (GBM), acute myeloid leukemia (AML), ovarian cancer

(OV) and so on (Fig. 1C; Table S2). Moreover, databases such as the

connectivity map (CMAP) (Lamb et al., 2006) and the Library of In-

tegrated Network-Based Cellular Signatures (LINCS) (Koleti et al.,

2018) have also been set up, which provides gene expression pro-

files before and after drug treatment, as well as other molecular data.



Fig. 1. Preclinical cancer models and the representative pharmacogenomic resources. A: Introduction and comparison of three kinds of cancer models (including patient-derived

cancer cell lines, organoids, and xenografts). The number of stars indicates strengths (more stars) and limitations (less stars). B: Sample size, number of screened compounds, and

molecular characteristics of the predominant pan-cancer pharmacogenomic resources that include multiple tumor types and the number of drugs should be above ten. C: Large-scale

cancer-specific pharmacogenomic datasets are generated from drug sensitivity researches, where one single and common type of cancer is studied, and at least one kind of omics data

is available. For the cancer types with more than one data source, the dataset with the highest number of sample-compound pairs is kept. The summary of datasets in (B) and (C) is

provided in Table S2.
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Large scaled drug perturbated protein response has also been pro-

filed using RPPA in cancer cell lines and provided a new insight to

identify protein-drug association for drug sensitivity prediction and

understanding drug mechanism of action (Zhao et al., 2020).

Tumor organoids

The success rate of establishing patient-derived tumor organoids

varies from different tumor types, ranging from 15% in prostate

cancer to 90% in colorectal cancer (CRC) (Weeber et al., 2017). Drug

screening experiments have been executed on tumor organoids to

support personalized therapy design. Pauli et al. (2017) established
543
56 organoids frommore than 17metastatic or primary tumor types as

living biobanks, and four of them had been used to prioritize thera-

peutics in ex-vivo drug screening. Although there are few new pro-

jects like OrganoidBase (Crown Bioscience Inc., 2021) and the newly

launched Organoid Cell Atlas pilot project by Human cell atlas (Bock

et al., 2021), unlike large-scaled pharmacogenomic resources of

cancer cell lines that covers diverse tumor types, pharmacogenomic

studies of organoids are usually more focused on a single tumor type.

Wetering et al. (2015) successfully generated 20 matched tumor and

healthy organoids from colorectal cancer patients and developed an

automatic drug screening assay to test 83 compounds. They well

characterized the genomic and transcriptomic profile of organoid
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heterogeneity and identified genetic correlations between oncogenic

mutations and drug response. Subsequent studies of CRC organoids

have revealed more genetic variations that are associated with drug

response (Kondo et al., 2019). Similar to CRC, organoid biobanks

have been established for gastric cancer (STAD), advanced prostate

cancers (PRAD), glioblastoma (GBM), liver cancer (LIHC), bladder

cancer (BLCA), biliary tract carcinoma (CHOL), and kidney cancers

(KIRC) et al. (Fig. 1C; Table S2). Breast cancer, known to be difficult

to construct organoid model owing to possible newly occurred clonal

drift, has also been successfully established (Sachs et al., 2018).

Meanwhile, these researches have conducted genomic, tran-

scriptomic, epigenetic, as well as phenotypic analyses to prove the

ability of these organoids to capture inter-tumor and intra-tumor

heterogeneity and restore the genetic landscape of their tumor ori-

gins. These biobanks also provide drug HTS data and have been

used on pharmacogenomic biomarker identification and drug

sensitivity prediction (Liu et al., 2020a).

Patient-derived tumor xenografts

Similar to cancer cell lines, there are several pan-cancer PDX

repositories providing accessibility of experimental models, genetic

profiles, and drug response data. Mouse Models of Human Cancer

Database (MMHCdb) is an expertly curated library of cancer mouse

models constructed by the Jackson Laboratory (Woo et al., 2019).

There are more than 580,000 mouse models in MMHCdb, 4372 of

which are PDXmodels, and 301 of these PDXs have screenedwith 23

single drug treatments and nine combinations. MMHCdb also pro-

vides mutational status, gene expression, the status of microsatellite

instability, as well as histopathology images of these models. The

European cancer research institutions have also built a data portal

(EurOPDX) for sharing more than 1500 PDX models from various

cancer types (Cerami et al., 2012). MMHCdb have collaborated with

EurOPDX and other PDX resources to form a searchable platform,

PDX Finder, to support the studies of tumor mechanism and drug

response (Conte et al., 2019). So far, PDX Finder has provided 4372

PDX models, 942 of which went through treatments or drug dosing

experiments. The patient-derived model repository (PDMR) from NCI

provides access to more than 3600 PDX models with RNA

sequencing and whole-exome sequencing data available (Evrard

et al., 2018). Interestingly, some of the PDX models in PDMR have

treatment histories of patients, which would be valuable to study the

mechanism of drug resistance.

Next, we reviewed the applications of PDX models in individual

pharmacogenomic researches. The Novartis Institutes for BioMed-

ical Research PDX encyclopedia (NIBR PDXE) provided 1075 PDX

models from more than 16 organ origins (Gao et al., 2015). They also

designed PDX clinical trial to measure drug response (involving 36

monotherapies and 26 combination therapies). Together with genetic

analysis, researchers have helped to identify predictive biomarkers

and reveal clinically related resistance mechanisms. Izumchenko et

al. (2017) established 237 PDX models from 1163 patients with

various advanced solid tumors and proved the reproductivity of both

positive and negative clinical outcomes with the corresponding pa-

tients against the same treatments. PDXliver specified on liver cancer

(116 PDX models) stored not only gene expression profiles, germline

and somatic mutations, copy number variants but also clinical

characteristics of patients and sorafenib response data of PDX mice

(He et al., 2018). PDX models also have been successfully estab-

lished for monotherapy or drug combination sensitivity screening on

lung squamous cell carcinoma (LUSC), bladder cancer (BLCA),

breast cancer (BRCA), HNSCC, KIRC, and CRC (Fig. 1C; Table S2).

Althoughmost PDX platforms only have pharmacogenomic data for a

small number of drugs, PDX models have shown their potential to

select drugs, identify biomarkers and guide patient stratification. For
544
example, the study of HNSCC PDXs identified CCND1 and CDKN2A

alterations as predictive biomarkers towards the response of CDK4/6

inhibitors (Karamboulas et al., 2018); another study of liver cancer

PDXs found the association between MAP3K1 expression and sor-

afenib sensitivity (Hu et al., 2020).

Model comparison and improvement

The following describes the comparison of preclinical cancer

model properties along with their advantages and limitations.

Compared to organoids and PDXs, cell lines have been more widely

used in various cancer types because of simpler culture protocols,

less cost, and more effective high-throughput screening. The main

bottleneck of cancer cell lines is the lack of phenotypic and genetic

heterogeneity presented in original tumors. Thus, it is difficult for cell

lines to imitate the mixed context of tumor tissue and their response

towards drugs.

Compared with cancer cell lines, organoids can better reveal drug

sensitivity or resistance-associated genetic patterns closer to what

happened in patients (Liu et al., 2020a). With relatively less time and

expense than animal models, organoids are more suitable to enlarge

sample size to improve reproductivity and reliability of drug discovery

(Liu et al., 2020a). Meanwhile, organoids can avoid possible inter-

species reactions, which may occur in animal models regarding the

measurement of drug response and toxicity, and help further reduce

the failure rate on preclinical experiments (Shanks et al., 2009). With

special organoid culture systems or co-culture techniques, organo-

ids also show the potential to imitate tumor microenvironment,

especially immune systems, which offers applicable models for tu-

mor immunotherapy response prediction and biomarker discovery

(Yuki et al., 2020). On the other hand, organoid models also have

some shortcomings. Tumor organoids require a complex cultural

environment, and the success rate is relatively low for some cancer

types (Liu et al., 2020a). Research teams have made efforts to

modify traditional HTS assay to fit the organoid culture system, but it

is still harder to perform high-throughput drug screening on orga-

noids (Liu et al., 2020a). Furthermore, the therapeutic response of

organoids may be influenced by cultural methods. Therefore, the

accumulation of drug response data on organoids is much slower.

Engrafted in tumor tissue form, PDX models can retain more

morphological characteristics, three-dimensional spatial structure,

as well as partial tumor microenvironments components of their

patient origins (Goto, 2020). Moreover, PDX models show more

consistent genetic and histological patterns with patient cancer tis-

sues, and these patterns are stable while passaging (Goto, 2020).

These give PDX models the ability to maintain human tumor biolog-

ical characteristics while stably enlarge sample size to preserve

valuable clinical resources. PDXs have shown closer consistence

with clinical responses of patients on the evaluation of drug efficacy,

as well as resistance and toxicity, which may effectively promote

translational medicine from basic to clinical science (Izumchenko

et al., 2017; Woo et al., 2019). Furthermore, PDXs can reflect ge-

netic characteristics and heterogeneity of patients more accurately

so that it serves a more solid experimental model to identify genetic

biomarkers to guide patient stratification clinically. The limitations of

the PDX model cannot be ignored. The establishment of PDX and

drug screening are quite expensive and time-consuming. The stro-

mal components have been reported to be replaced by mouse-

originate stroma while passaging (Goto, 2020). Therefore, the drug

response may get askew as the times of passaging increase.

Another shortcoming of PDX mice is the lack of an immune sys-

tem. Technologies to “humanize” the mouse immune system have

been developed to study the interactions between tumor cells, im-

mune cells, and stromal cells together with their impacts on anti-

cancer treatments (Olson et al., 2018). A genetically engineered
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mouse (GEM) is another model used in cancer research. GEMs are

established by editing the genome or introducing specific genetic

alterations into cells of interest (Sharpless and Depinho, 2006). GEMs

develop tumors in a natural microenvironment and provide the most

complete representation of cancer progression from initiation to

progression. However, high expense, long establishing time and

experimental difficulties hinder the use of these new models in

pharmacogenomic screening.

Computational methods for drug response prediction

With the accumulation of drug screening and multi-omics data,

drug-gene associations and biomarker identification can be

addressed by feature selection, and drug response prediction can be

abstracted as classification or regression problems (Fig. 2). These

computational models are usually evaluated by cross-validation and

independent datasets, some of which are also validated by animal

experiments or clinical trials. In this session, we review some recent

computational methods addressing these tasks.
Fig. 2. Workflow of drug resp
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Feature selection

Different feature selection strategies have been used to eliminate

redundant and irrelevant features to identify gene-drug associations

and improve the accuracy of drug prediction. Statistical tests such as

t-test, chi-square test, analysis of variance, and linear discriminant

analysis have been used to filter variables based on correlations with

outcome variables (Vidyasagar, 2015). More sophisticated methods

combine feature selection with prediction models; variables with the

best performance are selected as features. Elastic net regression

with bootstrap and random forest model has been applied to select

features associated with drug responses (Ding et al., 2016; Fang

et al., 2018) (Table 2). Another strategy of feature selection is utiliz-

ing networks of known biological relationships. ProGENI (Prioritiza-

tion of Genes Enhanced with Network Information) support vector

regression (SVR) model firstly performed network information on

gene expression profiles and then used RandomWalk with Restart to

rank genes (Emad et al., 2017); NETPHIX (NETwork-to-PHenotype

association with eXclusivity) identified subnetworks of genes whose
onse prediction models.



Table 2

Representative computational models for drug response prediction.

Algorithms Features Model description Validation

schemes

Data

source

Performance References

Network-based

prediction models

Dual-Layer

Network model

TþE Drug-cell line dual-Layer Network;

Linear weighted models

LOOCV CCLE

GDSC

PCCCCLE 2 [0.51,0.88]

PCCGDSC > 0.5

Zhang et al., 2015

GloNetDRP TþEM Drug-cell line dual-Layer Network;

Random walk with restart

5F-CV CCLE

GDSC

PCC ¼ 0.8

PCC ¼ 0.45

Le and Pham, 2018

HNMDRP TþEþPPI Drug-cell-targeted gene networks;

Informative flow-based algorithm

LOOCV GDSC AUC ¼ 0.87 Zhang et al., 2018

Zachary et al. MþPPI Drug-cell-gene sensitive and resistant

networks;

Difference between drug sensitive profile

and resistant profile

LOOCV GDSC

CCLE

AUC ¼ 0.8813

AUC ¼ 0.8474

Stanfield et al., 2017

Machine

earning models

Geeleher et al. E Most differentially expressed genes (t-

tests) as features;

Ridge regression

LOOCV CGP AUCdocetaxel ¼ 0.81

AUCbortezomib 2 (0.63, 0.71)

Geeleher et al., 2014

Gu et al. E/C/Me/Mi/R Univariate logistic regression or elastic

net regression for different input feature

selection;

Ensemble multivariate logistic regression

with bootstrap

5F-CV TCGA AUC 2 (0.33, 0.84) Ding et al., 2016

RFE -SVM E Recursive feature elimination (RFE);

SVM with linear kernel

LOOCV NCI60 ACC ¼ 0.841 Huang et al., 2017

ProGENI-SVR EþPPI Top 100 highest correlated genes as

input features via Prioritization of genes

enhanced with network information

(ProGENI);

Support vector regression with nonlinear

kernel

5F-CV LCL PCI 2 [0.45,0.75] Emad et al., 2017

pairwiseMKL TþEMC Multiple pairwise nonlinear kernel

combined with ridge regression

10F-CV GDSC PCC ¼ 0.858 Cichonska et al., 2018

BMTMKL EMCRMe Pathway-based multiple data views;

Bayesian multiview multitask multi-

kernel (nonlinear) learning

Individual test GDSC

DREAM

PCIDREAM ¼ 0.583 Costello et al., 2014

NBSBM EMCMeþPPI Disease-specific network;

Sparse Bayesian classifier

5F-CV Cancer

specific

datasets

AUCPRAD ¼ 0.942

AUCBRCA ¼ 0.737

Liu et al., 2019b

SRMF YþE Similarity-regularized matrix

factorization

10F-CV GDSC

CCLE

PCCGDSC ¼ 0.71 (±0.15)
PCCCCLE ¼ 0.78 (±0.07)

Wang et al., 2017

DSPLMF TþEMC Similarity-regularized logistic matrix

factorization

10F-CV GDSC

CCLE

AUCGDSC ¼ 0.76

AUCCCLE ¼ 0.776

Emdadi and Eslahchi, 2020

MC-RR E Ensemble of matrix completion and ridge

regression

10F-CV GDSC

CCLE

PCCCCLE-MEAN ¼ 0.7 Liu et al., 2020b

QRF EMC Random forest;

Quantile regression forest model

Out of bag CCLE PCC ¼ 0.6 Fang et al., 2018

Deep-Resp-Forest EC Multi-info multi-grained scanning

(MIMGS), cascade forest with feature

optimization (CFFO)

5F-CV GDSC

CCLE

ACCGDSC ¼ 0.863

ACCCCLE ¼ 0.833

Su et al., 2019

Deep

learning models

DNN model E DNN;

Interpreted with GSEA analysis on the

weights of the first hidden layer

5F-CV GDSC AUC ¼ 0.75 Sakellaropoulos et al., 2019

CDRscan TþMþG Ensembled five CNN 5F-CV GDSC RMSE ¼ 1.069, R2 > 0.84,

AUC > 0.98

Chang et al., 2018

MOLI EMC 3 DNN encoders þ 1-layer classifier 5F-CV

Individual test

GDSC

PDX

TCGA

AUCPDX_TCGA 2 [0.53,0.74] Sharifi-Noghabi et al., 2019

tCNNS YþMC 2 CNN encoders þ DNN 0.8/0.1/0.1 GDSC PCC ¼ 0.909 Liu et al., 2019a

PaccMann

web server

TþEþPPI Attention-based encoders þ DNN;

Interpreted with Gene attention weights

25F-CV CCLE

GDSC

RMSE ¼ 0.89, R2 ¼ 0.86 Cadow et al., 2020

DrugCell TþMþGO VNN encoder þ ANN encoder þ 1-layer

classifier;

Interpreted with Relative Local

Improvement in Predictive Power

(RLIPP) score

5F-CV GDSC

CTRP

SCC ¼ 0.8 Kuenzi et al., 2020

Abbreviations: (1) “Features” column: T, chemical structure; E, expression profile; M, mutation status; C, CNV; R: RPPA; Me, DNA methylation; Mi, miRNA expression; V, variant

genes; DT, drug targeted genes; PPI, protein-protein interaction network; P, biological pathways and gene sets; G, cancer-associated genes; GO, gene ontology. (2) Performance

measurements used in the original publications: PCC, Pearson correlation coefficient; AUC, area under ROC curves; SCC, Spearman correlation coefficient; PCI, weighted

concordance index developed by NCI-DREAM drug sensitivity challenge team; MSE, mean squared error; RMSE, Root-mean-squared error; R2, coefficient of determination.
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genetic alterations are associated with drug response (Kim et al.,

2020); Kong et al. (2020) identified proximal pathways of drug tar-

gets by computing average shortest-path lengths between drug

targets and pathways in protein-protein interaction network as inputs

of machine learning models trained on colorectal and bladder orga-

noid models to obtain predictive biomarkers and tested on patient

data.

Network-based prediction models

Network-based models have the capacity to imitate complex

systems of cancer at the sample level by integrating high-dimension

multimodal omics data and identifying gene-drug associations,

which may help reveal the underlying mechanism of action of drugs

on specific cancer samples. The commonly used network structure

for drug response prediction is the dual-layer integrated cell line-drug

network connecting a drug similarity network and a cell line similarity

network by known drug-cell line responses (Zhang et al., 2015)

(Table 2). Drug similarity can be derived from chemical structure

fingerprints; cell line similarity can be defined via gene expression

and genetic variants. Based on the assumption that similar cell lines

might show similar responses to similar drugs, a linear weighted

model based on the known responses of neighboring nodes (Zhang

et al., 2015) or a random walk with restart (RWR) algorithm was used

to make predictions (Le and Pham, 2018). HNMDRP (Heterogeneous

network-based method for drug response prediction) expanded

network architecture to three layers by adding protein-protein inter-

action (PPI) network and drug-target links and used informative flow-

based algorithm to estimate drug response (Zhang et al., 2018).

Stanfield et al. (2017) also integrated the PPI network, links between

drug and cell lines, cell lines, and mutated genes. Their novelty is to

use RWR to compute the network profile, a vector representing

proximity to genes mutated in cell lines. Each cell line is represented

by a cell line profile; each drug has two network profiles representing

the cell lines that are sensitive or resistant towards the corresponding

drug. The difference between the sensitivity score (the correlation

between sensitive profile and cell line profile) and the resistance

score (the correlation between resistant profile and cell line profile)

were used to predict drug sensitivity.

Machine learning models

Machine learning (ML) is an application of artificial intelligence that

can automatically learn patterns from complex observational data by

a statistics method. The underlying linear or nonlinear associations

between genes and drug response are complex. Therefore, the

combination of multiple strategies such as linear regression models

with a penalty, kernel-based models like support vector machine

(SVM), Bayesian methods, matrix factorization-based methods, as

well as ensemble models are commonly integrated for drug response

prediction.

Linear regression is one of the basic models, which is fast and

easy-to-interpret. In practice, the regularization penalty is often used

together to avoid possible overfitting (Friedman et al., 2010). Classic

penalized linear regression models such as ridge regression, least

absolute shrinkage and selection operator (LASSO) regression, and

elastic net regression have been applied to drug response prediction

(Geeleher et al., 2014; Huang et al., 2020) (Table 2). In order to

combine more biological information, various molecular profiles, as

well as prior knowledge such as protein-protein interactions and

tumor tissue origins, were incorporated in linear regression models

(Ding et al., 2016; Huang et al., 2020). For example, Huang et al.

(2020) constructed a tissue-guide linear regression model with

LASSO penalty; Ding et al. (2016) applied elastic net regression with

bootstrapping to select features from multi-types of molecular data
547
and designed an ensembled multivariate logistic regression to pre-

dict the patient clinical response.

Kernel trick is an important strategy in ML models, which project

input features to higher dimension space to learn the separating

hyperplane. Kernel support vector machine (SVM) is a typical

approach that handles both classification and regression on linear

and nonlinear relationships (Emad et al., 2017; Cichonska et al., 2018)

(Table 2). SVM is also commonly combined with feature selection

methods. For example, Huang et al. (2017) trained support vector

machine (RFE-SVM) model with a recursive feature elimination (RFE)

feature selection approach; Emad et al. (2017) trained nonlinear

support vector regression with a network-based gene prioritization

method (ProGENI) as feature filter. Multiple-kernel learning methods

offer promising benefits since they can incorporate different infor-

mation sources simultaneously. The multiple pairwise kernel

regression model (pairwiseMKL) achieved good performance (Pear-

son’s correlation coefficient, PCC ¼ 0.858) in anticancer drug

response prediction (Cichonska et al., 2018). PairwiseMKL firstly

designed multiple drug kernels and multiple cell line kernels from the

chemical structure and genomic data, respectively, and then pair-

wise kernels were calculated as Kronecker products of drug kernels

and cell line kernels; finally, a weighted combination of pairwise

kernels was used for prediction.

Bayesian inference is an effective method utilizing prior informa-

tion to compute the posterior probability. The problem of drug

response prediction needs to integrate multiple data sources and

output multiple variables (responses of multiple drugs). Therefore,

Bayesian inference coupled with multiview and multitask learning

have been increasingly used (Costello et al., 2014; Liu et al., 2019b)

(Table 2). Multiview learning represents heterogeneous input data

such as gene expression, mutation, copy number variation, drug

target genes, and biological pathways as multiple data views. Mul-

titask learning trains all drugs simultaneously, which can obtain

better performance than single-task algorithms. A typical example is

the Bayesian multitask multiple kernel learning method (BMTMKL),

the top-performing model in the NCI-DREAM drug sensitivity pre-

diction challenge (Costello et al., 2014). In addition to multiview

learning, multitask learning, and Bayesian inference, BMTMKL uti-

lized the kernel method to reduce dimensionality and captures

nonlinear relationships. Moreover, Liu et al. built a cancer-specific

network-based spare Bayesian model from multi-omics data and

put it as prior information for drug sensitivity prediction (Liu et al.,

2019b).

Matrix factorization (MF) learns latent representations by

decomposing a target matrix into two low-dimensional matrices and

estimating the predicted matrix from the dot product of the two latent

matrices. Thus, it is possible to project drug and cell line features into

a latent feature space and reconstruct the predicted drug sensitivity

matrix (Wang et al., 2017; Emdadi and Eslahchi, 2020) (Table 2).

Another advantage of MF-based models is that latent representa-

tions may contain informative biological associations between drug

and pathway or drug and gene. For example, a similarity-regularized

matrix factorization method (SRMF) not only showed promising

prediction power (average PCC ¼ 0.71 ± 0.09) but also found novel

drug-cancer gene associations related to drug sensitivity (Wang

et al., 2017).

Ensemble learning is a popular ML technique that combines

multiple learners to improve performance. Random forest is the most

commonly used ensemble method to predict drug response.

Boosting algorithm such as Extreme Gradient Boosting (xgBoost)

was also used to train prediction model on cell line data and further

validated on individual datasets, including cell lines and xenografts

(Kurilov et al., 2020). Liu et al. combine matrix completion and ridge

regression to develop an ensemble drug sensitivity prediction model

(Liu et al., 2020b). Deep-Resp-Forest is a more complicated model
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that combines multi-info multi-grained scanning and cascade forest

with feature optimization to predict drug response and achieves high

prediction accuracy (Su et al., 2019).

Deep learning models

Deep learning (DL) is a special subset of machine-learning

methods. It consists of multiple layers of the neural network, which

is inspired by how biological neurons connect and pass messages.

Applying nonlinear activation functions to transmit signals between

different layers, DL can abstract nonlinear relationships from a

complex biological system. DL has the ability to deal with large-scale,

high-dimensional data, so it is suitable for the scenario of estimating

drug response from pharmacological and multi-omics data (Chiu

et al., 2020) (Table 2).

The simplest architecture of DLmodels is the deep neural network

(DNN), which comprises a multi-layer neural network with inter-

connected neuron units. Sakellaropoulos trained a three-layer DNN

model with gene expression profiles to predict drug sensitivity

(Sakellaropoulos et al., 2019). With batch effect adjusted, authors

trained the DNN model on cancer cell line data and applied it on

patient data to predict drug response (AUC ¼ 0.75). Convolutional

neural network (CNN) is another classic architecture of the DL model.

Instead of fully connected neurons in DNN, convolutional layers can

extract local features with the convolutional kernel so that they can

efficiently reduce dimension while preserving important information.

Incorporated mutation position information of curated cancer-asso-

ciated genes and molecular descriptors of drugs, Cancer Drug

Response Profile scan (CDScan) ensembled five CNN models with

different structures to predict drug IC50 values and achieved high

performance (Chang et al., 2018). Autoencoder (AE) is an unsuper-

vised learning technique using several hidden layers to compress the

dimension of inputs (encoder) and reconstruct the inputs from the

compressed outputs (decoder) (Baptista et al., 2021). Some large

cancer repositories like TCGA have molecular data but lack drug

response data. AEs can utilize these unlabeled data to obtain the low

dimension representation of gene expression, mutation status, CNV,

and drug structure, and then DNN and CNN were built to train pre-

diction models from samples with drug responses (Liu et al., 2019a;

Sharifi-Noghabi et al., 2019).

One of the obstacles to using DL models is interpretability.

Attention mechanism refers to assigning different weights to each

input feature according to importance. PaccMann applied a multi-

scale convolutional attention mechanism to encode chemical struc-

ture and gene expression (Cadow et al., 2020). Gene attention

weights could reflect the importance of genes to drug sensitivity.

Other interpretability methods like Shapley additive explanations and

Layer-wise Relevance Propagation can be used to obtain feature

importance, which facilities model interpretation (Baptista et al.,

2021). For gaining better interpretability, a visible neural network

(VNN) scheme was designed based on biological knowledge to

regularize DL model architecture (Chiu et al., 2020). DrugCell, an

improved VNN model, used the hierarchy of Gene Ontology (GO) to

model functional subsystems of a cell (Kuenzi et al., 2020). It ach-

ieved a high correlation between the predicted value and ground

truth (Spearman correlation coefficient ¼ 0.8). More importantly, the

contribution of each GO biological process term can be quantified so

that it can learn underlying mechanisms via functional analysis.

Important factors for improving drug response prediction

In the drug sensitivity prediction challenge cohosted by DREAM

and NCI, 44 algorithms covering a range of methodologies were

collected and benchmarked with the same accuracy measurements

for predicting the response of 28 compounds in breast cancer cell
548
lines (Costello et al., 2014). Another recent review article assessed 17

representative methods on four large public datasets (GDSC, CCLE,

NCI60, and CTRP) in nine evaluationmetrics (Chen and Zhang, 2021).

Both studies highlight that the common important factors for drug

sensitivity prediction models are the integration of multi-omics data,

the contribution of prior knowledge, the utility of nonlinear algorithms,

andmultitask learning. The DREAM challenge organizers noticed that

the performance of models with same methodology varies greatly,

even when using similar data types (Costello et al., 2014). It illustrates

the importance of feature selections and algorithm-specific data

processing ability. The performance of some models dramatically

changed across different datasets and evaluation metrics, indicating

the importance of robustness and generalization in method devel-

opment (Chen and Zhang, 2021). Moreover, the contributions of

different omics data to drug response prediction were discussed.

Gene expression profile shows best predictive power, followed by

protein expression, methylation data, and other molecular data.

Biomarkers and predictions of immunotherapy response

Although preclinical models such as humanized mice have been

developed to examine responses to immunotherapy, the techniques,

cost and time of model establishment limit the accumulation of large-

scale pharmacogenomics data for immunotherapy; therefore, bio-

markers of immunotherapy are dominantly found by clinical trials;

prediction approaches of immunotherapy response are developed

based on the understanding of immune escape mechanism instead

of learning from large-scale pharmacogenomic data of cancer

models.

In addition to FDA-approved immune checkpoint blockade (ICB)

biomarkers (microsatellite status, mutation burden, and PD-L1

expression), the expression level of CD8A and CD8B also have

shown a potential association with ICB response (Chen et al., 2016).

However, a single biomarker is not powerful enough to precisely

stratify patients because of tumor heterogeneity and complex inter-

action between tumor cells and immune cells (Chen et al., 2016;

Jiang et al., 2018). Gene expression signatures consisting of multiple

genes have been identified to associate with immunotherapy

response, such as the 10-gene and 28-gene expanded signatures

linking to IFN-g expression (Ayers et al., 2017), the 18-gene tumor

inflammation signature (Damotte et al., 2019), and the immuno-

predictive score encompassing 15 pairwise transcriptomics re-

lations (Auslander et al., 2018). Tumor-infiltrating lymphocytes are

also in association with immunotherapy response and patient sur-

vival, such as CD8þ cytotoxic T cells, B cells and dendritic cells are

positively associated with immunotherapy response and prognos-

tics, while myeloid-derived suppressor cells, macrophage type 2,

and regulatory T cells are negatively associated immunotherapy

resistance and prognostics in some cancer types (Bruni et al., 2020;

Petitprez et al., 2020). More complex prediction approaches for ICB

have also been built with large-scale patient omics data such as from

The Cancer Genome Atlas (TCGA). Immunophenoscore is the

weighted sum of four Z-scores that represent four types of immune-

related signatures involving in MHC-related antigen presentation,

immune checkpoints and immunemodulators, immune effector cells,

and immune inhibitory cells derived from TCGA patient data

(Charoentong et al., 2017). TIDE algorithm firstly classifies patients

according to the level of cytotoxic T lymphocyte and then calculates

the correlation of gene expression profiles with the signatures of T-

cell dysfunction and immune exclusion to predict response (Jiang

et al., 2018). Fifteen-gene signature related to hot and cold tumor

microenvironment were mined from large biological literatures and

verified the prediction performance on melanoma and breast cancer

data cohorts (Wang et al., 2021). ICB resistance-related cancer cell

program was obtained from single-cell sequencing data of
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melanoma patients before and after receiving immune checkpoint

inhibitor therapy and TCGA melanoma bulk-RNASeq dataset (Jerby-

Arnon et al., 2018). With the development of computation methods

and the deeper understanding of cancer immunity, microbiome and

pathology images have also be considered to construct prediction

models. However, due to the limitation of immunotherapy response

data, current predictive models were validated on several publicly

available data sets such as melanoma and lung cancer (Charoentong

et al., 2017; Jiang et al., 2018; Wang et al., 2021). The generation of a

more powerful model to predict ICB response remains a future

challenge.

Another newly emerged immunotherapy, such as chimeric anti-

gen receptor (CAR) T cell therapy, has received widespread attention

due to its high response rate in the treatment of diffuse large B-cell

lymphoma and B-cell precursor acute lymphocytic leukemia

(Jafarzadeh et al., 2021). However, the response rates of CAR-T cell

therapy varied widely among different cancers and patients.

Although identifying therapeutic biomarkers of immune cell therapy

response research is still in its early stage, some potential predictive

biomarkers of CAR-T cell therapy have been identified by the single-

cell analysis, such as polyfunctionality of CAR T cells, TNF-aþIFN-gþ

polyfunctional MART-1-specific T cells, as well as CD8þ T cell

exhaustion signatures (e.g. PD-1, LAG-3 and TIM-3) and memory-

related-genes (e.g. STAT3-related cytokines and serum IL-6) (Feins

et al., 2019; Jafarzadeh et al., 2021). With limited data sets, it is

tough to build a prediction model to estimate patient responses.

Challenge in personalized cancer medicine

Large-scale pharmacogenomic screening and drug response

prediction have made dramatic improvements in the past decades,

but the consistency between datasets, robustness, generalization

capability, and interpretability of biomarkers and prediction models

remain extremely hard tasks. We will discuss these problems from

the perspective of data and algorithms. On the one hand, inconsis-

tency between multiple pharmacogenomic datasets is common.

Drug response data may be inconsistent due to the differences in

cancer model establishment methods, drug doses and screening

protocols, and measurement indices of drug sensitivity (Bouhaddou

et al., 2016; Mpindi et al., 2016). Even for the same drug on same

cancer cell lines, drug response profiles are not ideally consistent

(Rahman et al., 2019). Similarly, molecular characteristics of cancer

models or patients may not be comparable because of different

experiment platforms and analysis pipelines. The problem is more

serious for expression profiles due to the batch effect of different

datasets. Even if there are methods to reduce batch effects, the

impact cannot be completely removed (Espin-Perez et al., 2018).

Therefore, before using the accumulated pharmacological and omics

data, suitable standardization and batch-effect correction strategies

should be thoroughly designed to reduce the effects. On the other

hand, the accuracy of prediction algorithms usually decreases when

applying to independent test datasets (Liu et al., 2019a). Most of the

drug response prediction models were tested using k-fold or leave-

one-out cross-validation (Table 2); these models are likely to be over-

fitting. The prediction accuracies among different drugs or cancer

types may vary greatly (Zhang et al., 2015; Emad et al., 2017; Sharifi-

Noghabi et al., 2019; Huang et al., 2020). The imbalanced number of

drugs and the distribution of samples by cancer types in multiple

datasets will also affect the generalization capability of models

(Rahman et al., 2019). There are some DL models that tried to bal-

ance this problem with the transfer learning concept (Kim et al., 2021)

which suggests that it is possible to improve the model as the

method is improved.

Translation of biomarker candidates and prediction models ob-

tained from cancer models into clinical practice is another major
549
challenge in personalized cancer medicine. First, the pharmacoge-

nomic studies and computational prediction methods based on

cancer models have not well considered different pharmacokinetics

(absorption, distribution, metabolism, and excretion) in the human

body. Second, there exists intra-tumor heterogeneity. Molecular

profiles obtained from bulk tissues may not reflect the features of

some tumor cells and microenvironment. The single-cell technique

has been emerged to dissect tumor microenvironment and has been

used to identify aggressive cell population and their association with

drug response (Farkkila et al., 2020; Roider et al., 2020). Therefore,

incorporating a single cell technique with drug screening may help

analyze the effects of intra-tumor heterogeneity. Third, patient tu-

mors constantly evolve. Sensitive clones are killed during treatment,

and resistant clones grow (Brady et al., 2017). Prediction based on

the molecular characteristics of a tumor before treatment may not be

suitable for the tumor after evolution. The single-cell technique also

has been used to elucidate the genetic profile changes at multiple

time points under drug perturbation at the cell level (Su et al., 2017;

Maynard et al., 2020). It may help sort out a deeper mechanism of

acquired resistance of drugs and optimize medical regime (Anchang

et al., 2018) to achieve better response for patients. Although some

studies have reported the consistency of drug response between

preclinical tumor models and patient tumors (Gao et al., 2015; Ooft et

al., 2019; Qiu et al., 2019), and a few biomarkers and prediction

models achieved satisfactory results in patients (Sakellaropoulos

et al., 2019; Sharifi-Noghabi et al., 2019), these studies generally

only have a small number of patients and individual drugs. It is hard to

estimate the effectiveness and accuracy of biomarker candidates or

prediction models in the large number of heterogeneous patients.

Therefore, it will be essential to build a comprehensive biomedicine

knowledge base to integrate representative preclinical and patients’

pharmacogenomic data (Caroli et al., 2020). New computation

methods, such as transfer learning, can be embedded in the data-

base’s backend and provides drug response prediction and thera-

peutic biomarker candidates identification for further verification by

clinical trials.
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