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In brief

Hui and colleagues delineate the

transcriptional dynamics of hepatocyte

responses to liver injury and report that

the proinflammatory factor IL-6 from

Kupffer cells is repurposed for

hepatocyte dedifferentiation. Activated

IL-6/STAT3 signaling drives the

expression of reprogramming/

progenitor-related genes through injury-

specific rather than embryogenesis-

related enhancers.
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SUMMARY
Stem cell-independent reprogramming of differentiated cells has recently been identified as an important
paradigm for repairing injured tissues. Following periportal injury, mature hepatocytes re-activate reprog-
ramming/progenitor-related genes (RRGs) and dedifferentiate into liver progenitor-like cells (LPLCs) in
both mice and humans, which contribute remarkably to regeneration. However, it remains unknown which
and how external factors trigger hepatocyte reprogramming. Here, by employing single-cell transcriptional
profiling and lineage-specific deletion tools, we uncovered that periportal-specific LPLC formation was
initiated by regionally activated Kupffer cells but not peripheral monocyte-derived macrophages. Unexpect-
edly, using in vivo screening, the proinflammatory factor IL-6was identified as the niche signal repurposed for
RRG induction via STAT3 activation, which drove RRG expression through binding to their pre-accessible
enhancers. Notably, RRGswere activated through injury-specific rather than liver embryogenesis-related en-
hancers. Collectively, these findings depict an injury-specific niche signal and the inflammation-mediated
transcription in driving the conversion of hepatocytes into a progenitor phenotype.
INTRODUCTION

The reprogramming of differentiated cells into progenitor-like

cells has recently been discovered as an important injury-repair
paradigm independent of adult stem cells in a variety of epithelial

tissues in mammals,1 such as the lung,2 intestine,3 pancreas,4

and liver.5,6 A better understanding of in vivo reprogramming

would not only provide new insights into tissue repair but also
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Figure 1. Single-cell analysis of hepatocytes in reprogramming

(A) Co-staining of SOX9 and HNF4a in normal and DDC-injured livers. CV, central vein; PV, portal vein. Scale bars: 100 mm.

(B) The distribution of SOX9+HNF4a+ LPLCs across the liver lobular (n = 8).

(legend continued on next page)
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facilitate the development of therapies for diseases related to

impaired regeneration. However, by which mechanism the re-

programming of differentiated cells is triggered remains largely

uncharacterized.

The liver possesses a remarkable regeneration capacity under

injury conditions. Following periportal injury, hepatocytes re-

activated progenitor genes and underwent dedifferentiation

into liver progenitor-like cells (LPLCs) to repair the injured

liver. For example, in 3,5-diethoxycarbonyl-1,4-dihydrocollidin

(DDC)-induced periportal injury, LPLCs gave rise to approxi-

mately 25% of the newly regenerated hepatocytes and, to

some extent, cholangiocytes.7,8 When the formation of LPLCs

was restrained, injured livers showed prolonged hepatocyte pro-

liferation, enhanced biliary injury, and reduced fibrosis resolu-

tion.8 It is noteworthy that LPLCs were also detected in various

human liver diseases, suggesting the relevance of these cells

in human pathogenesis.9 However, despite their significance in

periportal injury and repair, the molecular mechanisms underly-

ing hepatocyte reprogramming remain largely uncharacterized.

Our previous study has revealed that the chromatin regions of

liver progenitor genes remain accessible in mature hepatocytes,

thereby endowing hepatocytes with intrinsic ‘‘reprogramming

competence’’ for the rapid response to extrinsic injury signals

and expression of these genes.8 Several extrinsic signals have

been proposed for LPLC formation, including Notch and

Wnt.9,10 However, these signals exist under both pathological

and physiological conditions, leading to the question of whether

there are injury-specific signals for LPLC induction. In addition,

cell reprogramming often occurs in highly specialized regions

of injured tissues.11 In periportal injury, LPLCs are mainly gener-

ated in the region 1–5 layers away from injured bile ducts.7–9,12,13

Given the anatomically specialized formation of LPLCs, it is

reasonable to speculate that there is a region-specific niche

signal that drives LPLC formation.

In addition to the unidentified driving signal, it is important to

understand how such a signal is transduced to produce a dedif-

ferentiated phenotype from mature hepatocytes. As shown by

in vitro reprogramming systems, such as induced pluripotent

stem cells14,15 and induced hepatocytes,14,15 original cells

were converted to other cell identities by directly overexpressing

a set of lineage-specific transcription factors. However, it is diffi-

cult to imagine the direct overexpression of progenitor-specific

transcription factors in injury-induced reprogramming in vivo.

Instead, either signals specific for the reprogramming or the re-

purposing of known signals are expected. In addition, since

the dedifferentiation of mature hepatocytes re-activates genes

highly expressed in liver embryogenesis, it is important to deter-

mine whether such a signal controls the regulatory mechanism

that is shared between development and reprogramming.16

Nevertheless, if an injury-specific signal triggers hepatocyte
(C and D) UMAP visualization of hepatocytes in normal and DDC-injured livers ge

pseudotime (D).

(E) Dot plot showing the scaled expression levels of feature genes among cell su

(F) Module scores of RRGs in each cell were exhibited on UMAP (left) and boxpl

(G) The GSEA analysis of RRGs in hepatoblast versus hepatocyte.

(H) Heatmap showing the scaled activity of pathways in reprogramming.

(I) Scatterplots showing the dynamic changing patterns of representative signali

n.s., not significant; ***p < 0.001. See also Figure S1; Tables S1 and S2.
reprogramming, should we rather expect a development-inde-

pendent regulation driving the expression of progenitor genes

in injured adult livers?

In this study, by employing single-cell RNA sequencing

(scRNA-seq) and lineage-specific mouse lines, we identified

that a subpopulation of liver-resident macrophages (Kupffer

cells, KCs), locating around injured bile ducts, provided a

periportal-specific niche for hepatocyte reprogramming. Sur-

prisingly, using in vivo screening, we identified that the proin-

flammatory factor IL-6, as the key niche signal secreted by

regionally activated KCs, but not by monocyte-derived macro-

phages (MoMFs), was repurposed to induce the expression of

reprogramming/progenitor-related genes (RRGs) through

STAT3 activation. Importantly, STAT3, which was inactivated in

hepatocyte specification during liver embryogenesis, drove re-

programming through directly binding to pre-accessible en-

hancers of RRGs, demonstrating an injury-specific rather than

development-related transcriptional regulation.

RESULTS

Dynamic cellular responses in hepatocyte
reprogramming
To delineate hepatocyte reprogramming, we characterized the

molecular features and activated pathways in LPLCs during peri-

portal liver injury and inversely inferred extrinsic trigger signals

based on the activated pathways. LPLCs, formed specifically

around periportal regions, were determined as parenchymal

cells both showing a hepatocyte morphology and expressing

both the hepatic marker HNF4a, and the progenitor marker

SOX9 (Figures 1A and 1B).7–9 Hepatocytes were collected from

livers after 1 week of DDC injury, at which time LPLCs were fully

induced (Figure S1A). Normal hepatocytes were used as con-

trols. 10X Chromium scRNA-seq was performed to unbiasedly

obtain gene expression profiles during hepatocyte repro-

gramming (Figures 1C and S1B). After quality control and data

filtration, we retained 1,194 cells from normal livers and 3,606

cells from DDC-injured livers for subsequent analyses (STAR

Methods).

Twenty-five cell clusters were identified by a graph-based al-

gorithm and visualized using uniform manifold approximation

and projection (UMAP; Figure S1C). Cells of clusters 0, 11, 12,

14, 15, 22, 23, and 24 showing high expression of liver function

genes, such as Sult2a8, Mup7 and Mup1, were designated as

normal hepatocytes (NormalHep; Figures S1D and S1E).

Notably, NormalHep showed low expression levels of stress

response genes17 activated during tissue dissociation (Fig-

ure S1F), suggesting limited hepatocyte damage during isola-

tion. Using the well-established progenitor markers, Sox9,

Spp1, Sox4, Bicc1, Cd44, and Cd24a, cluster 7 was annotated
nerated by 10X chromium protocol. Colors indicated cell subpopulations (C) or

bpopulations.

ot (right).

ng pathways along reprogramming pseudotime.
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as LPLCs (Figure S1E). To unravel the cellular transitions during

reprogramming, we performed pseudotime ordering of the he-

patocytes (Figure 1D; STAR Methods). The reprogramming tra-

jectory showed that normal hepatocytes projected through

injured hepatocytes (InjuredHep1 and InjuredHep2), PreLPLCs

to LPLCs, which then progressed to the stage showing reduced

expression of progenitor markers (PostLPLC1 and PostLPLC2;

Figure 1D). Consistently, the enhanced expression of progenitor

genes and downregulated liver function genes correlated with

the continuous transition between different subpopulations

(Figure 1E).

Based on this dataset, we identified 232 RRGs enriched in

LPLCs (Table S1; STAR Methods). RRGs significantly distin-

guished LPLCs from other subpopulations, as LPLCs showed

the highest module score of RRGs (Figure 1F). RRGs repre-

sented key features of reprogramming, such as genes related

to liver progenitors, fetal liver functions, epithelial cell differenti-

ation, cell proliferation and adhesion (Figure S1G; Table S1).

Notably, we validated that RRGs were enriched in hepatoblasts

by analyzing the expression of E12.5 fetal livers (Figure 1G), con-

firming that hepatocyte reprogramming re-activated genes ex-

pressed during liver embryogenesis.

To infer potential trigger signals for LPLC formation, we deci-

phered the dynamics of pathway activation during reprogram-

ming by single-sample gene set enrichment analysis (Table S2;

STAR Methods). Several reported injury-related pathways were

activated, including the Notch, Wnt, TGF-b and Hippo/Yap path-

ways (Figures 1H and 1I). Importantly, it was notable that im-

mune-related pathways exhibited remarkably dynamic patterns.

Upon damage, immune responses were significantly activated in

InjuredHeps, which were further enhanced in PreLPLCs and

showed the strongest activation in LPLCs (Figures 1I and S1H).

Notably, the proinflammatory IL-6 and TNF response pathways

were not immediately induced in InjuredHeps but were gradually

elevated in PreLPLCs and LPLCs (Figure S1H), displaying pat-

terns closely correlated with LPLC formation. These data indi-

cated that immune-related pathways were activated in a

stage-dependent manner during LPLC formation.

To obtain in-depth coverage of the altered genes, LPLCs were

isolated from DDC-injured Sox9-EGFP mice and were analyzed

by Smart-seq2 (Figures S1I–S1K; STAR Methods). A trajectory

from normal hepatocytes to LPLCs was identified using this da-

taset (Figure S1L), and the module score of RRGs also distin-

guished LPLCs from non-LPLCs (Figure S1M). Importantly,
Figure 2. Macrophages control hepatocyte reprogramming

(A) Flow cytometry showed the absolute number of T cells (CD45+CD3e+), B cell

Ly6C+ monocytes (CD45+Ly6G�CD11b+F4/80�Ly6C+), and macrophages (CD45

DDC-injured (n = 6) livers.

(B andC) The depletion efficiency of T cells, B cells, and NK cells was analyzed in p

quantified (C; n = 5).

(D and E) Neutrophils depletion and DDC injury. The depletion efficiency of neutrop

quantified (E; n = 3).

(F andG)Macrophage depletion and DDC injury. Immunofluorescent staining of F4

Co-staining of SOX9 and HNF4a and the ratios of SOX9+HNF4a+ cells were sho

(H) Co-staining of SOX9, HNF4a, and F4/80 in DDC-injured livers. The correspon

(I) The mean number (left) and size (right) of macrophages around PV or CV were

(J and K) Macrophage depletion and post-injury recovery. Serum levels of ALP and

ratios of Ki67+ hepatocytes were shown (K; n = 3).

Scale bars: 100 mm. Data were presented as mean ± SD; n.s., not significant; *p
immune-related pathways were again markedly increased, sup-

porting a correlation between immune response and LPLC for-

mation (Figure S1N).

Macrophages drive hepatocyte reprogramming
The strong immune response in LPLCs led us to postulate that

immune signals may play a role in reprogramming. We then

analyzed the dynamic alterations in immune cell populations

by absolute number quantification. In line with the elevated im-

mune response, numbers of innate immune cells, including mac-

rophages, neutrophils, and natural killer (NK) cells, and adaptive

immune cells, including T cells and B cells, were increased in

injured livers (Figure 2A; STAR Methods).

We characterized which types of immune cells might be

involved in hepatocyte reprogramming. Rag2�/�;Il2rgc�/� mice

deficient in T cells, B cells, and NK cells were analyzed (Fig-

ure 2B). LPLC formation in DDC-injured Rag2�/�;Il2rgc�/�

mice, Rag2�/� mice, and Il2rgc�/� mice was comparable to

that in wild-type (WT) mice as indicated by quantification of

SOX9+HNF4a+ cells (Figures 2C and S2A). To investigate

whether neutrophils were involved, the anti-Ly6G antibody 1A8

was utilized to deplete neutrophils (Figure 2D). LPLC formation

was not affected by neutrophil depletion (Figure 2E). These

data suggested that T cells, B cells, NK cells, and neutrophils

are dispensable for hepatocyte reprogramming. When liver mac-

rophages were efficiently depleted by clodronate liposomes

(Figure 2F), LPLC formation was reduced by 57.7% (Figure 2G).

In another periportal liver injury model induced by 4,40-diamino-

diphenylmethane (DAPM), macrophage depletion also led to a

substantial decrease in LPLC formation (Figure S2B), suggesting

that macrophages are required for LPLC formation in multiple

injuries.

We next performed scRNA-seq of hepatocytes from macro-

phage-depleted DDC-injured livers (Figure S2C). Integration

analysis mapped these cells into subpopulations determined in

Figure 1C (STAR Methods). When visualized on UMAP, a sub-

population of hepatocytes from macrophage-depleted livers

(cluster 4) was identified sharing the same area where LPLCs

were located (Figure S2C). However, compared with LPLCs,

the expression of RRGs and immune-related pathways was

not fully induced in cluster 4 (Figures S2D and S2E). When indi-

vidual subpopulations were analyzed, the expression of path-

ways upregulated during reprogramming was reduced in

hepatocytes from macrophage-depleted livers (Figure S2E). In
s (CD45+CD19+), NK cells (CD45+NK1.1+), neutrophils (CD45+CD11b+Ly6G+),
+CD11blowLy6G�F4/80+) in normal (n = 7), 3-day DDC-injured (n = 6) and 7-day

eripheral blood (B). The ratios of SOX9+HNF4a+ cells in DDC-injured livers were

hils was analyzed by flow cytometry (D). The ratios of SOX9+HNF4a+ cells were

/80 and the number of F4/80+ cells per field of view (POV) were shown (F; n = 6).

wn (G; n = 12). CLO, clodronate liposomes; PBS, PBS liposomes.

ding density plot image was shown.

quantified (n = 5). Each circle denoted the number in a field of view.

TBA were measured (J; n = 6). Immunohistochemistry staining of Ki67 and the

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, t test. See also Figure S2.
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contrast, liver function pathways remained relatively high in clus-

ter 4 (Figure S2E). These data support that LPLC formation is

impeded by macrophage depletion.

We then analyzed the spatial correlation between macro-

phages and LPLCs. F4/80 staining showed that macrophages

were significantly enriched in the periportal regions (Figures 2H

and 2I), where LPLCs were formed (Figure 1B). Moreover, peri-

portal macrophages exhibited a significantly larger cellular size

compared with those around the central veins (Figure 2I), sug-

gesting that these macrophages might constitute a regional re-

programming niche.

Because hepatocyte reprogramming is required for liver

repair,7,8 we speculated that reduced formation of LPLCs after

macrophage depletion would lead to impaired post-injury repair.

Compared with control mice, serum levels of alkaline phospha-

tase (ALP), total bile acid (TBA), alanine aminotransferase

(ALT), and aspartate aminotransferase (AST) stayed high in

macrophage-depleted mice after DDC withdrawal at multiple

time points (Figures 2J and S2F–S2J). No differences in serum

bilirubin levels, glucose levels, and activated partial thrombo-

plastin time were detected during the recovery (Figures S2K–

S2M). The ratio of Ki67+ hepatocytes was decreased at 1 week

after DDC injury but remained to be continuously detectable at

higher levels in macrophage-depleted mice (Figures 2K and

S2N). The higher ratio of Ki67+ hepatocytes after DDC with-

drawal appeared to be correlated with the decreased reprog-

ramming and unresolved injury in these mice. These data

supported that macrophage depletion, which resulted in dysre-

gulated hepatocyte reprogramming, led to impaired liver repair

after periportal injury.

Resident KCs are the subtype of macrophages required
for LPLC formation
Two subtypes of macrophages have been identified in injured

livers: KCs and MoMFs.18 These macrophages function differ-

ently in tissue injury and regeneration.18,19 To investigate the

composition of liver macrophages in DDC-induced injury, we

performed scRNA-seq of 10,210 macrophages and related cells

from normal and DDC-injured livers (Figures 3A and S3A; STAR

Methods). In DDC-injured livers, three clusters were identified.

Cluster 4, expressing KC markers Clec4f, Timd4, and Vsig4,20

was denoted as DDC_KC (Figure 3B). Cluster 2, negative for

KC markers and positive for macrophage markers Adgre1,

Trem2, Cd68, Gpnmb, and Cx3cr1, was designated as
Figure 3. Resident Kupffer cells are the subtype of macrophages requ

(A) UMAP visualization of macrophages/monocytes in normal and DDC-injured l

(B) Dot plot showing the scaled gene expression levels of lineage-specific ma

mTomato�, cells from injured livers.

(C) The absolute number of KCs (CD45+Lin�CD11blowF4/80+Tim4+, left) and MoM

(n = 6) livers were shown.

(D and E) MoMFs/monocytes were traced as tdTomato+GFP+ in Ms4a3-Cre;R

CLEC4F was shown (E). n = 3.

(F and G) DDC injury in WT and Ccr2�/� mice. Co-staining of F4/80 and CLEC4F

80+Tim4�) per mice by flow cytometry were shown (F; right). Co-staining of SOX9

Ccr2�/�, n = 4.

(H and I) DDC injury after PBS or diphtheria toxin (DT) treatment inClec4f-Cre;Ros

absolute number of KCs per mice by flow cytometry were shown (H; PBS, n = 5; D

were shown (I; n = 7).

Scale bars: 100 mm. Data were presented as mean ± SD; n.s., not significant; *p
MoMF21 (Figure 3B). Cluster 1, positive for Ccr2, Itgam,

S100a6, Cx3cr1, and Ly6c2 and negative for macrophage

markers, was designated as monocytes,20 the precursors of

MoMFs (Figure 3B). In normal livers, only one cluster showing

high expression levels of KC markers was identified and desig-

nated as Normal_KC (Cluster 3; Figure 3B).

The number of KCs remained unchanged at day 3 and

increased 2.4-fold at 1 week (Figure 3C), likely due to the

augmented proliferation of KCs in injured livers (Figures S3B–

S3D). MoMFs were almost undetectable in normal livers,

whereas around 1 3 106 MoMFs were recruited per injured liver

as early as three days after injury (Figure 3C). We further

determined whether the spatial localization of KCs and

MoMFs correlated with LPLCs. CLEC4F staining revealed that

KCs were localized across the lobule in injured livers

(Figures S3E and S3F). When monocytes and MoMFs were

labeled as tdTomato+GFP+ usingMs4a3-Cre;Rosa26-LSL-tdTo-

mato;Cx3cr1-GFP mice, these cells were recruited to the portal

veins after DDC treatment (Figures 3D and 3E). In addition, co-

staining with F4/80 and CLEC4F confirmed that MoMFs (F4/

80+CLEC4F�) were located close to the portal veins

(Figures S3G and S3H). These data imply that both KCs

and MoMFs are possible niche cells driving hepatocyte

reprogramming.

To unambiguously distinguish the roles of these two cell sub-

types, we applied lineage-specific mouse lines to either block

the recruitment of monocytes or deplete KCs. As liver infiltration

of monocytes depends on CCR2 signaling,22 we used Ccr2�/�

mice to block the recruitment of MoMFs into injured livers.

Ccr2�/� mice displayed a reduced number of MoMFs after

DDC injury (Figure 3F), while the KC population was not altered

(Figure S3I). Interestingly, LPLC formation remained unchanged

in DDC-injured Ccr2�/� livers (Figure 3G), largely excluding the

role of MoMFs in LPLC induction. Next, KCs were efficiently

depleted in Clec4f-Cre;Rosa26-LSL-iDTR mice by diphtheria

toxin treatment (Figure 3H). Notably, DDC-induced LPLC forma-

tion was significantly reduced after KC depletion (Figure 3I), sug-

gesting a key role of KCs in hepatocyte reprogramming.

IL-6 derived from activated periportal KCs triggers
reprogramming
We then analyzed by which factor KCs induced hepatocyte

dedifferentiation. Based on the above results, this factor should

be paracrinely produced from KCs, but not fromMoMFs or other
ired for LPLC formation

ivers from 10X chromium sequencing.

rker genes in different subpopulations. mTomato+, cells from normal livers;

Fs (CD45+Lin�CD11blowF4/80+Tim4�, right) in normal (n = 7) and DDC-injured

osa26-LSL-tdTomato;Cx3cr1-GFP mice (D). Immunofluorescent staining of

and the quantification of absolute number of MoMFs (CD45+Lin�CD11blowF4/

and HNF4a and the ratios of SOX9+HNF4a+ cells were shown (G). WT, n = 3;

a26-LSL-iDTRmice. Co-staining of F4/80 and CLEC4F and the quantification of

T, n = 6). Co-staining of SOX9 and HNF4a and the ratios of SOX9+HNF4a+ cells

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, t test. See also Figure S3.
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Figure 4. IL-6 derived from regionally activated Kupffer cells triggers hepatocyte reprogramming

(A) Schematic view of in vivo delivery of factors in normal mice.

(B) Co-staining of SOX9 and GFP in livers of HDTVi of GFP (CMV-GFP) or IL-6 (CMV-Il6-GFP). The number of SOX9+ hepatocytes near GFP+ cells was quantified

(n = 7).

(legend continued on next page)
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immune cells. scRNA-seq of macrophages from DDC-injured

livers suggested a set of KC-specific secretion factors, including

IL-1a, IL-1b, and IL-6 (Figure S3J). Additionally, transcriptome

analyses of macrophages, monocytes, T cells, and neutrophils

from injured livers showed another set of factors expressed in

macrophages but not in T cells or neutrophils (Figure S3K). In to-

tal, 13 inflammatory factors were selected as candidate factors,

and 3 Wnt ligands commonly expressed in the liver were addi-

tionally included (Figure 4A).

To identify the factors that trigger reprogramming, we ex-

pressed each factor individually in normal livers (Figure 4A).

Genes encoding candidate factors were cloned into a vector car-

rying the GFP reporter and then delivered to the liver by hydrody-

namic tail-vein injection (HDTVi; STAR Methods). The GFP

reporter without candidate factor was used as the control. Co-

staining of GFP and HNF4a in HDTVi livers showed that 98.5%

of GFP+ cells were HNF4a+ hepatocytes (Figure S4A). In this sys-

tem, hepatocytes were used as a proxy to secrete the factor

without injury context, so that we could determine the driving ef-

fect of the factor on hepatocyte reprogramming. To specify the

niche effect of the factor, cells were sparsely transfected into

the liver using a low dose of vector. We speculated that if the fac-

tor could trigger reprogramming, SOX9+ hepatocytes should be

detected around GFP-positive cells secreting this factor.

Among the 16 factors, IL-6 was the only factor that robustly

induced SOX9+HNF4a+ hepatocytes (Figure 4B). Notably, all

SOX9+HNF4a+ hepatocytes formed neighboring IL-6-secreting

cells, showing a paracrine effect. Other inflammatory factors

and Wnt ligands, when expressed alone, did not induce the for-

mation of SOX9+HNF4a+ cells (Figure S4B). It was remarkable

that these cells highly expressed Il6 (Figure S4C) and RRGs (Fig-

ure 4C), including the progenitor marker genes—Sox9, Spp1,

Bicc1, Cd44, and Cd24a—and displayed dramatically downre-

gulated liver function pathways (Figure 4C), confirming that

IL-6 induces hepatocyte reprogramming.

To determine the specificity of KC-derived IL-6, we validated

that the expression of Il6 was increased at the beginning of

DDC injury by qRT-PCR (Figure S4D) and that IL-6was produced

from KCs, but not other types of cells, by measuring IL-6 protein

levels in all non-parenchymal cells from injured livers (Figures

S4E and S4F). IL-6 was specifically deleted in KCs using

Clec4f-Cre;Il6f/f (Il6Dkc) mice (Figures 4D and 4E). Il6 deletion

did not affect KC numbers and the expression of KC activated

genes (Figures S4G and S4H). The formation of DDC-induced

LPLCs was significantly reduced in Il6Dkc livers (Figure 4F). The

reduction in LPLC formation was at the level comparable to
(C) GSEA analysis (left) showed the enrichment of RRGs in SOX9+ hepatocytes fro

Hep). Downregulated pathways in IL-6-responded Hep were shown (right).

(D–F) Schematic view of DDC injury in Il6f/f and Il6Dkc mice (D). The mRNA level o

HNF4a and the ratios of SOX9+HNF4a+ cells were shown (F; Il6f/f, n = 6; Il6Dkc, n

(G) Co-staining of SOX9, HNF4a, and CLEC4F in DDC-injured mice.

(H) The size of KCs adjacent to SOX9�HNF4a+ hepatocytes and adjacent to S

denoted a cell.

(I) UMAP visualization of DDC_KCs (Figure 3A).

(J) Dot plot showing the scaled gene expression levels of cytokine genes in diffe

(K) Pathways enriched in DDC_KC_c1 versus DDC_KC_c0.

(L) Flow cytometry showed the cellular size of IL-6+ KCs and IL-6� KCs. Mean F

(M) Schematic view showed regionally activated KCs produced IL-6 to regulate

Scale bars: 100 mm. Data were presented as mean ± SD; *p < 0.05, ***p < 0.001
that in mice with macrophage depletion (Figure 2G) or KC deple-

tion (Figure 3I). These data suggested that KC-derived IL-6 is a

major niche factor in LPLC induction.

Given that KCswere distributed across the lobule in the injured

livers (Figure S3F), whereas LPLCs were formed specifically in

the periportal regions (Figure 1B), we speculated that KCs

were differentially activated to secrete IL-6. Notably, co-staining

of KCs and LPLCs revealed that KCs adjacent to LPLCs ex-

hibited a significantly enlarged cellular size (Figures 4G and

4H), indicating that these KCs might be activated during injury.

Moreover, two subpopulations within the DDC-treated KCs

were unbiasedly identified using scRNA-seq data (Figure 4I).

Cluster 1 of DDC_KCs, expressing feature genes such as

Cd38, Mmp12, Egr1, Nr4a1, and Cd80 (Figure S4I), showed up-

regulated levels of inflammatory cytokine genes, including Il6,

Tnf, and Il1a (Figure 4J). Pathway analysis also confirmed the

enrichment of phagocytosis, IL-6 production, and the TLR

pathway in this subpopulation (Figure 4K; Table S3). Interest-

ingly, IL-6-positive KCs exhibited a larger cellular size than IL-

6-negative KCs (Figure 4L), which was consistent with the

enlarged size of KCs adjacent to LPLCs in situ (Figure 4G). Dur-

ing liver injury, KCs could be activated by proinflammatory fac-

tors and damage-associated molecular patterns (DAMPs)

released from injured hepatocytes and cholangiocytes.19 We

additionally analyzed whether DDC directly activated KCs by

treating freshly isolated KCs with DDC in vitro. Interestingly, Il6

and other feature genes of activated KCs were induced

(Figures S4J and S4K), while the number of KCs appeared un-

changed (Figure S4L). Together, these data suggested that

following injury an activated and enlarged subset of KCs highly

produce IL-6 and induce periportal LPLC formation (Figure 4M).

IL-6 directly affects hepatocyte dedifferentiation
Proper transduction of the IL-6 signal requires IL-6 receptor IL-

6RA and co-receptor gp130.23 Both Il6ra and gp130 were ex-

pressed in normal hepatocytes and LPLCs as determined by

scRNA-seq analyses (Figure S5A). To confirm that IL-6 interacts

with hepatocytes directly (Figure 5A), we specifically deleted IL-6

receptor (IL-6RA) in hepatocytes using Alb-Cre;Il6raf/f (Il6raDli)

mice. Il6ra was efficiently deleted in Il6raDli livers (Figure S5B)

without affecting mature hepatic functions (Figure S5B) or KC

population (Figure S5C). In line with the findings in Il6Dkc mice,

hepatocyte-specific deletion of IL-6RA significantly decreased

the formation of LPLCs (Figure 5B). Moreover, adeno-associated

viruses (AAVs) 8-carried Cre recombinase (AAV-Cre; STAR

Methods) were delivered into gp130f/f mice, which deleted
m IL-6 HDTVi livers (IL-6-responded Hep) versus GFP HDTVi controls (Normal

f Il6 in KCs was determined by qRT-PCR (E; n = 3). Co-staining of SOX9 and

= 3).

OX9+HNF4a+ LPLCs in DDC-injured livers was quantified (n = 3). Each circle

rent subpopulations from DDC_KCs.

SC-A intensity was quantified (n = 6).

LPLC formation following injury.

, ****p < 0.0001, t test. See also Figures S3 and S4; Table S3.
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Figure 5. IL-6/STAT3 signaling is repurposed for hepatocyte dedifferentiation and liver repair

(A) Schematic diagram showed the direct and indirect interaction between KCs and hepatocytes.

(B) DDC injury in Il6raf/f and Il6raDli mice. Co-staining of SOX9 and HNF4a and the ratios of SOX9+HNF4a+ cells were shown (Il6raf/f, n = 6; Il6raDli, n = 7).

(legend continued on next page)
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gp130 in hepatocytes (gp130Dli) efficiently and specifically (Fig-

ure S5D). Reduced LPLC formation was detected in gp130Dli

mice after liver injury (Figure 5C). LPLC formation induced by

ectopic expression of IL-6 was completely abolished in Il6raDli

and gp130Dli mice (Figure S5E). Together, these data demon-

strated that KC-derived IL-6 is a key reprogramming niche factor

directly inducing hepatocyte reprogramming.

IL-6/STAT3 signaling is repurposed for hepatocyte
reprogramming
Binding of IL-6 to IL-6RA and gp130 leads to activation of JAK/

STAT3 and, to a lesser extent, YAP.23 Intriguingly, YAP deletion

in hepatocytes did not affect IL-6-induced LPLC formation (Fig-

ure S5F). By contrast, immunofluorescent staining of phosphor-

ylated STAT3 (pSTAT3), mainly detectable around the periportal

area, confirmed the activation of STAT3 in LPLCs (Figures S5G

and S5H). STAT3 activation was strikingly blunted by either

depletion of macrophages (Figure S5I) or inhibition of IL-6

signaling (Figure S5J).

To determine whether STAT3 links IL-6 signaling to hepato-

cyte reprogramming, STAT3 was specifically deleted in hepato-

cytes by delivering AAV-Cre into Stat3f/f mice (Stat3Dli). Notably,

in Stat3Dli mice the number of LPLCs was dramatically reduced

following DDC injury (Figure 5D) and completely abolished by

IL-6 HDTVi (Figure S5K). In agreement with the reduced hepato-

cyte reprogramming, transcriptome analysis validated that the

induction of RRGs was attenuated in Stat3Dli livers from either

DDC injury (Figure S5L) or IL-6 HDTVi (Figure S5M). Collectively,

these data demonstrated that IL-6/STAT3 proinflammatory

signaling is repurposed for hepatocyte reprogramming.

We further investigated whether liver repair would be impaired

by the inactivation of STAT3 signaling. To this end, we analyzed

liver recovery from DDC injury in gp130Dli (Figure 5E) and Stat3Dli

(Figure 5I) mice. Ductal reaction and fibrosis were still obvious in

gp130Dlimice (Figure 5F) and Stat3Dlimice (Figure 5J) 1 week af-

ter recovery. Moreover, liver injury was not fully resolved, as

shown by the high serum levels of ALP and TBA and proliferating

hepatocytes in gp130Dli (Figures 5G and 5H) and Stat3Dli mice

(Figures 5K and 5L). These results demonstrated the crucial

role of IL-6/STAT3 signaling in liver repair after periportal injury.

STAT3 binds to pre-accessible RRG enhancers and re-
activates RRG transcription
As IL-6/STAT3 signaling is mainly involved in the proinflamma-

tory response,23 it was unexpected that it controlled cell identity

conversion in liver injury. To define the role of the transcription

factor STAT3 in reprogramming, we focused on its regulation
(C) DDC injury in gp130f/f mice treated with AAV-GFP/Cre. Co-staining of SOX9

gp130Dli, n = 5).

(D) DDC injury in Stat3f/f mice treated with AAV-GFP/Cre. Co-staining of SOX9

Stat3Dli, n = 11).

(E–H) Schematic view showed DDC injury and recovery in gp130f/fmice treatedwi

view were shown (F). Serum levels of ALP and TBA were measured (G). Co-stain

gp130f/f, n = 3; gp130Dli, n = 5.

(I–L) Schematic view showed DDC injury and recovery in Stat3f/f mice treated wit

view were shown (J; n = 3). Serum levels of ALP and TBA were measured (K; n =

shown (L; n = 3).

Scale bars: 100 mm. Data were presented as mean ± SD; *p < 0.05, **p < 0.01, *
on RRGs. LPLCs were induced by HDTVi-mediated IL-6 expres-

sion, and chromatin immunoprecipitation sequencing (ChIP-

seq) of pSTAT3 was performed specifically in these cells

(STARMethods). We identified 27,685 STAT3-binding sites (cor-

responding to 11,196 genes) in the genome of LPLCs. Markedly,

186 of 232 RRGs showed STAT3 binding, suggesting a signifi-

cant increase in STAT3-binding preference for RRGs (Figure 6A;

p = 2.42 3 10�17, chi-squared test). Moreover, compared with

other STAT3-binding sites, RRGs showed a higher STAT3-bind-

ing strength (Figure 6B). Two example loci of RRGs, the up-

stream regions of Sox9 and Spp1, represented STAT3 binding

(Figure 6C).

We previously found that genes expressed in liver progenitors

remained accessible in mature hepatocytes via Arid1a regula-

tion, endowing hepatocytes with the competence to respond

rapidly to reprogramming signals.8 We investigated whether IL-

6/STAT3-signaling-mediated reprogramming requires Arid1a-

controlled chromatin accessibility. Markedly, STAT3-binding

sites in RRGs overlapped with Arid1a-opened chromatin sites

(Figures 6D and 6E). Moreover, in line with reduced chromatin

accessibility in livers lacking Arid1a, LPLC formation induced

by IL-6 HDTVi was decreased after Arid1a deletion (Figure 6F),

suggesting that Arid1a-controlled chromatin accessibility is

required for IL-6/STAT3-signaling-mediated reprogramming.

Next, we determined whether the binding of STAT3 led to

chromatin activation of RRGs bymeasuring histone 3 acetylation

at lysine 27 (H3K27ac), a marker of activated enhancers. STAT3-

binding sites in RRGs showed remarkably increased H3K27ac

levels in LPLCs (Figures S6A and S6B), suggesting the activation

of these sites. To reveal whether the binding of STAT3 imposed

transcriptional activation, we analyzed the STAT3-binding se-

quences of two progenitor marker genes with increased

H3K27ac modification (Figure 6G). The upstream regions of the

Sox9 gene (Sox9-site) and Spp1 gene (Spp1-site; see Figure 6C)

were cloned into the front of an mCherry reporter, which were

then transfected into mouse livers (STAR Methods). Upon IL-6

HDTVi, mCherry expression was strongly induced from both

Sox9-site and Spp1-site sequences. Moreover, Sox9-site- and

Spp1-site-driven expression of mCherry was abolished in

Stat3Dli livers (Figures 6H and S6C), demonstrating that tran-

scription from these enhancers was STAT3 dependent.

STAT3-dependent RRG transcription specifically in liver
injury but not in embryogenesis
Genes controlling embryonic development are often reused for

adult tissue repair,16,24 and recent studies have proposed that

the transcription of these genes during repair might be regulated
and HNF4a and the ratios of SOX9+HNF4a+ cells were shown (gp130f/f, n = 7;

and HNF4a and the ratios of SOX9+HNF4a+ cells were shown (Stat3f/f, n = 9;

th AAV-GFP/Cre (E). H&E staining and ductal reaction area per periportal field of

ing of Ki67 and HNF4a and the number of Ki67+ hepatocytes were shown (H).

h AAV-GFP/Cre (I). H&E staining and ductal reaction area per periportal field of

5). Co-staining of Ki67 and HNF4a and the number of Ki67+ hepatocytes were

**p < 0.001, ****p < 0.0001, t test. See also Figure S5.
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by repair-responsive DNA elements.25–30 Because RRGs were

also highly expressed in hepatoblasts during liver embryogen-

esis (Figure 1G), we investigated whether STAT3-mediated

RRG regulation was a development-related or, instead, an

injury-specific mechanism. Markedly, in mouse fetal livers,

STAT3 was not activated (Figure S6D) and canonical STAT3

target genes31,32 were not induced (Figure S6E). Furthermore,

it was reported that STAT3 was dispensable for liver develop-

ment.33 These data indicated that STAT3 is not involved in

RRG expression during fetal liver development.

Transcription-factor-mediated gene expression correlates

with activated chromatin. As STAT3-mediated RRG transcription

is specific in liver repair, we postulated that chromatin activation

of RRGs might be regulated differently in LPLCs and hepato-

blasts. H3K27ac modifications of RRGs were compared

between DDC-induced LPLCs and fetal hepatoblasts. STAT3-

binding sites in RRGs showed markedly different patterns of

H3K27ac profiles between LPLCs and hepatoblasts (Figure 6I),

supporting that chromatin activation of RRGs is regulated differ-

ently in regeneration versus development. These chromatin sites

were further separated into two groups (Figures 6I and 6J). The

first group (173 of 668 STAT3-binding RRG sites) showed similar

H3K27ac levels between LPLCs and hepatoblasts (Figure 6J)

and was mainly located at proximal regions (Figure 6K). The

other group (495 of 668 STAT3-binding RRG sites) showed

significantly increased H3K27ac specifically in LPLCs but not

in hepatoblasts (Figure 6J). Importantly, most of these sites

(89.3%, p < 8.4 3 10�46, chi-squared test) were located at the

distal regions of the RRGs (Figure 6K). Since H3K27ac modifica-

tion reliably marks active enhancers located in the distal regions

of a given gene,34 these data suggested that the binding of

STAT3 to RRG enhancers in LPLCs is different from that in hep-

atoblasts, thereby proposing a transcriptional regulation specific

for periportal liver injury and repair.

DISCUSSION

In vivo dedifferentiation and transdifferentiation promise a stem

cell-independent paradigm for tissue repair. Many studies have

supported the existence of in vivo reprogramming in mammalian

epithelial tissues. Importantly, mature hepatocytes were found

reprogrammed into LPLCs to contribute to liver repair after peri-

portal injury.7,9,13 We demonstrated here that regionally acti-

vated KCs directly induce periportal LPLC formation via IL-6

and that proinflammatory IL-6/STAT3 signaling is repurposed

for the expression of RRGs through an injury-specific transcrip-
(C) Integrative Genomics Viewer (IGV) plot showed the ChIP-seq peaks of STAT

(D) Heatmap of STAT3-binding signals in RRGs. ATAC-seq signals of Arid1aDli he

binding sites in RRGs.

(E) Quantification of ATAC-seq signals in STAT3-binding RRGs sites in Arid1aDli

(F) Schematic view showed HDTVi of IL-6 in Arid1af/f and Arid1aDli mice. Immuno

(G) IGV plot showed STAT3 and H3K27ac ChIP-seq peaks on Sox9-site and Spp

(H) Reporter vectors (Sox9-site-mCherry or Spp1-site-pHSVtk-mCherry) were c

expression in the liver was measured by qRT-PCR.

(I) Heatmap of H3K27ac ChIP-seq signals in STAT3-binding RRGs in E12.5 hepa

(J) Average H3K27ac signals on Group 1 and Group 2 sites.

(K) Distribution of STAT3-binding peaks on Group 1 and Group 2 sites was sho

from TSS.

Scale bars: 100 mm. Data were presented as mean ± SD; *p < 0.05, **p < 0.01, t
tional program. IL-6/STAT3 signaling is sufficient to induce a

large group of liver progenitor genes, which is an entirely

different proinflammatory role for IL-6. These findings provide a

paradigm to understand reprogramming in other injured tissues.

While sterile inflammation is common in injuries and is often

involved in tissue regeneration,35 our results suggest a concept

that proinflammatory signalingmay directly induce the transcrip-

tion of progenitor-related genes for injury-induced cell dediffer-

entiation in mammals. Given that inflammatory factors are

master regulators in the dedifferentiation of mature cells to blas-

tema during the regeneration of lost body parts in planaria and

amphibians, it is interesting to speculate whether an evolution-

arily conserved regenerative mechanism exists. Of course, the

formation of blastema involves several tissue types of different

origins, which is different from one or two epithelial cell types

in adult liver regeneration.

Our data showed that hepatocyte reprogramming is strongly

associated with dynamic immune responses. Notably, periportal

KCs are the major cellular components producing IL-6 as a

specialized reprogramming niche signal for proximate hepato-

cytes (Figure S6F). Macrophages have been reported to perform

a plethora of functions in injured tissues.18,19 Nevertheless, it is

surprising thatmacrophages also function as key niche cells con-

trolling reprogramming, highlighting their master role in tissue

repair and regeneration. In contrast, bone-marrow-derived

MoMFs are not involved in, which functionally distinguishes resi-

dent KCs and MoMFs from the circulation. We also wish to note

that IL-6-secreting KCs locate in specific regions, which are 1–5

layers away from injured bile ducts. The location of these IL-6-

secreting KCs are only partially overlapped with the injured

area. The specialized regional activation of KCs may be induced

by DDC directly or by local metabolites, proinflammatory factors

and DAMPs released from injured hepatocytes and cholangio-

cytes.19 It would be interesting to characterize underlying mech-

anisms and factors in the future. Moreover, it was unexpected

that a single proinflammatory factor, IL-6, would possess the

prominent ability to trigger highly efficient in vivo reprogramming.

This is in sharp contrast to those designed for in vitro reprogram-

ming that use cocktails of multiple factors and have relatively low

efficiencies. Interestingly, several studies around 20 years ago

have also shown that IL-6 protects hepatocytes from injuries.36,37

However, the underlying mechanisms remained unclear at the

time. Our data suggest that the protective function of IL-6 is likely

dependent on its regulation of hepatocyte reprogramming.

We demonstrated that STAT3 is a major downstream effector

that mediates IL-6-induced hepatocyte reprogramming. A
3 and input on Sox9-site and Spp1-site.

patocytes and DDC-induced LPLCs were shown in the same sites with STAT3-

hepatocytes and LPLC.s.

fluorescent staining of SOX9 was shown (n = 3).

1-site in Figure 6C.

o-transfected with IL-6 into the Stat3f/f and Stat3Dli livers by HDTVi. mCherry

toblasts and LPLCs.

wn. Proximal peaks and distal peaks were annotated based on the distance

test. See also Figure S6.
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remarkable feature of regeneration is the activation of genes that

are critical in embryogenesis, and it is often questionable

whether gene expression programs in regeneration share regu-

lations with those in development. Intriguingly, our findings

demonstrate that STAT3, a transcription factor not involved in

hepatocyte lineage specification, re-activates almost the entire

set of RRGs. Moreover, STAT3-binding enhancers of RRGs

showed active H3K27ac modifications specific for liver injury

and repair. These data illustrate an injury-responsive, regenera-

tion-specific transcriptional mechanism by which the reprog-

ramming of differentiated cells in other tissues might follow.

Repurposing the proinflammatory IL-6/STAT3 for the expres-

sion of progenitor programs and hepatocyte dedifferentiation

renews the understanding of the role of IL-6/STAT3 signaling in

tissue injury and repair. Our findings may provide not only a

framework to understand tissue repair, but also supply a poten-

tial strategy to develop treatments for repair-related liver dis-

eases by unlocking the expression of RRGs. For example, it

would be worth testing IC7Fc,38 an engineered IL-6-like protein

that specifically elicits STAT3 activation in hepatocytes without

the signs of inflammatory activation in immune cells, for promot-

ing liver regeneration.

Limitations of the study
In this study, periportal liver injury models were implemented to

demonstrate the repurposed function of KCs and the proinflam-

matory IL-6/STAT3 signaling in hepatocyte reprogramming. It

will be interesting to determine whether the process is similarly

regulated in other forms of liver injuries, such as pericentral liver

injury and partial hepatectomy. By analyzing the expression of

Sox9 and RRGs in published scRNA-seq data,39 we found that

it was likely that hepatocyte reprogramming might occur in acet-

aminophen (APAP)-induced pericentral liver injury (Figures S6G

and S6H). Furthermore, our preliminary data showed that

APAP induced the formation of SOX9+HNF4a+ hepatocytes at

multiple time points, which were also positive for STAT3 staining

(Figures S6I–S6N). It is worth to test whether similar regulatory

mechanisms of hepatocyte reprogramming may be involved in

other injuries.
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Arid1af/f Gao et al.42 N/A

gp130f/f Li et al.43 N/A

Yapf/f Zhang et al.44 N/A

Rag2-/- Shinkai et al.45 N/A

Il2rgc-/- Shultz et al.46 N/A

Ms4a3-Cre Liu et al.47 N/A
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129S6/SvEvTac Charles River Laboratories N/A

Oligonucleotides

Primers for qRT-PCR See Table S4 This paper N/A

Recombinant DNA

CMV-GFP This paper N/A

CMV-Il6-P2A-GFP This paper N/A

CMV-Il1a-P2A-GFP This paper N/A

CMV-Il10-P2A-GFP This paper N/A

CMV-Il11-P2A-GFP This paper N/A

CMV-Cxcl1-P2A-GFP This paper N/A

CMV-Cxcl14-P2A-GFP This paper N/A

CMV-Il1b-P2A-GFP This paper N/A

CMV-Ccl2-P2A-GFP This paper N/A

CMV-Tnf-P2A-GFP This paper N/A

CMV-Csf1-P2A-GFP This paper N/A

CMV-Csf2-P2A-GFP This paper N/A

CMV-Csf3-P2A-GFP This paper N/A

CMV-Cxcl16-P2A-GFP This paper N/A

CMV-Wnt3a-P2A-GFP This paper N/A

CMV-Wnt4-P2A-GFP This paper N/A

CMV-Wnt7a-P2A-GFP This paper N/A

Sox9-Site-mcherry This paper N/A

Spp1-Site-pHSVtk-mcherry This paper N/A

Software and algorithms

Cell Ranger (v6.0.1) 10X Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/what-is-cell-ranger

Cutadapt (v1.14) Martin.48 https://cutadapt.readthedocs.io/en/stable/

Trimmomatic Bolger et al.49 https://github.com/usadellab/Trimmomatic

FASTX-Toolkit (v0.0.13) N/A http://hannonlab.cshl.edu/fastx_toolkit
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UMI-tools Smith et al.50 https://github.com/CGATOxford/UMI-tools

STAR (v2.5.2b) Dobin et al.51 https://github.com/alexdobin/STAR

Htseq-count (v0.6.0) Anders et al.52 https://htseq.readthedocs.io/en/

master/htseqcount.html

Seurat R package (v4.0.1) Stuart et al.53 https://satijalab.org/seurat/

monocle3 R package (v1.0.0) Cao et al.54 https://cole-trapnell-lab.github.io/monocle3

pheatmap R package (v.1.0.12) N/A https://rdrr.io/cran/pheatmap/

ggplot2 R package N/A https://ggplot2.tidyverse.org

Gene Set Enrichment Analysis (GSEA) Subramanian et al.55 https://www.gsea-msigdb.org/gsea/index.jsp

GSVA R package (v1.38.2) Hanzelmann et al.56 https://www.bioconductor.org/packages/

release/bioc/html/GSVA.html

limma R package (v3.46.0) Ritchie et al.57 https://www.bioconductor.org/packages/

release/bioc/html/limma.html

DESeq2 R package Love et al.58 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

ClusterProfiler R package (v3.18.1) Yu et al.59 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

Bowtie2 Langmead et al.60 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

MACS (v2.1.1) Zhang et al.61 https://macs3-project.github.io/MACS/

deepTools (v2.5.3) Ramirez et al.62 https://deeptools.readthedocs.io/

Integrative Genomics Viewer (IGV) Robinson et al.63 https://igv.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lijian Hui

(huilab@sibcb.ac.cn).

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and code availability
All sequencing data generated in the study have been deposited at Gene Expression Omnibus (GEO) and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table. This paper does not report original code. Any addi-

tional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice used in this study
Il6raf/f mice (T009974) and IL6f/f mice (T005443) were purchased from Gempharmatech Co., Ltd. Alb-Cre;Il6raf/f (Il6raDli) and Alb-

Cre;Arid1af/f (Arid1aDli) mice were generated by crossing Alb-Cre mice41 with Il6raf/f mice and Arid1af/f mice,42 respectively.

Clec4f-Cre;Rosa26-LSL-iDTR mice were generated by crossing Clec4f-Cre-tdTomato mice (Jax, 033296) with Rosa26-LSL-iDTR

mice (Jax, 007900). gp130f/fmice43 were generated and kindly provided by Y. Nie. Stat3f/fmice65 (Jax, 016923) were kindly provided

by L. Jiang. Ccr2-/- mice (Jax, 004999) were kindly provided by F. Ginhoux. Rosa26-mTmG mice (Jax, 007676) and all above mice

were maintained on a mixed background (129S6/SvEvTac and C57BL/6J). Yapf/f mice44 were on C57BL/6J genetic background.

Ms4a3-Cre;Rosa26-LSL-tdTomato;Cx3cr1-GFP mice47 was kindly provided by F. Ginhoux. Sox9-EGFP mice (RRID:

MMRRC_011019-UCD) were purchased from MMRRC at University of California, Davis, and maintained on a mixed background

(FVB/N and 129S6/SvEvTac). Rag2-/-;Il2rgc-/- mice45,46 were maintained on the Balb/c background. For macrophage depletion,

neutrophil depletion, DAPM injury and APAP injury, 129S6/SvEvTac mice (Charles River Laboratories) were used unless otherwise

specified. To identify the trigger factor of reprogramming, we used either 129S6/SvEvTac or FVB/N wild-type mice as recipients in

HDTVi assays. IL-6-induced LPLCs were confirmed in both mouse lines. For HDTVi assays, gp130f/f mice, Arid1af/f mice and Stat3f/f

mice were maintained on the mixed genetic background of 129S6/SvEvTac and C57BL/6J, and Yapf/f mice were maintained on
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C57BL/6J genetic background. All mouse experiments were approved by the Institutional Animal Care and Use Committee of the

Center for Excellence in Molecular Cell Science (CEMCS) and performed in accordance with this committee’s guidelines. None of

the mice used in these studies had been subjected to prior procedures and were drug and test naive. Mice were housed in a tem-

perature- and light-controlled (12-h light/dark cycle) specific pathogen-free (SPF) animal facility, in individually ventilated cages al-

ways with companion mice. Mice used in this study were 8-12 weeks of age. Male mice were used for most of these mouse

experiments.

Viral strains used in this study
Adeno-associated viruses 8 carrying Cre recombinase under the regulation of the thyroid hormone binding globulin promoter

(AAV8.TBG.PI.Cre.rBG, AAV-Cre) and adeno-associated viruses 8 carrying green fluorescent protein under the regulation of the thy-

roid hormone binding globulin promoter (AAV8.TBG.PI.eGFP.WPRE.bGH, AAV-GFP) were purchased from University of Pennsylva-

nia Vector Core. For AAV virus infection, 2.53 1011 genomic particles of AAV-Cre or AAV-GFP were reconstituted in 200 mL PBS and

injected intravenously through tail veil injection with BD Ultra-Fine Insulin Syringes. After two weeks virus washing out, these mice

then received DDC treatment or HDTVi of plasmids.

METHOD DETAILS

Liver injury induction and post-injury repair
For DDC-induced liver injury, mice were given 0.1% DDC (Sigma-Aldrich, 137030) diet (1 g per 1,000 g) for one week. For DAPM

injury, mice were received one intraperitoneal injection of DAPM (Tokyo Chemical Industry, M0220) at a dose of 100 mg/kg body

weight and were euthanized after one week. For APAP injury, mice were fasted for 12 hours prior to an intraperitoneal injection of

acetaminophen (Adamas Reagent, 11969A) at a dose of 300 mg/kg body weight. For post-injury liver repair, mice were given

0.1% DDC diet for one or two weeks and then kept on normal diet for two days or one week.

Neutrophil, macrophage and KC depletion
Anti-Ly6G antibody 1A866 (Bio X Cell, BP0075-1) was used to deplete neutrophils in the liver. Neutrophil depletion was performed by

intraperitoneal administration of 400 mg anti-Ly6G antibody 24 hours prior to injury induction. An additional of 200 mg antibody was

administrated after three days of injury induction. Mice treated with rat IgG2a isotype control (Bio X Cell, BP0089) were used as con-

trol for neutrophil depletion.

Clodronate liposomes67 were used to deplete macrophages in the liver. Macrophage depletion was performed by intravenous in-

jection of clodronate liposomes (LIPOSOMA, CP-005-005) at a dose of 10 mL/g body weight 24 hours prior to injury induction. An

additional injection was performed after three days of injury induction. Mice treated with PBS liposomes were used as control for

clodronate liposomes treatment.

KC depletion was performed by intraperitoneal administration of 500 ng diphtheria toxin (Sigma) 24 hours prior to injury induction in

Clec4f-Cre;Rosa26-LSL-iDTR mice.68 Mice injected with PBS were used as control for KC depletion.

Hydrodynamic tail-vein injection
To overexpress genes in mouse hepatocytes, hydrodynamic tail-vein injection (HDTVi)69 was used. The expression vector used in

this experiment was pAAV with the cytomegalovirus immediate–early promoter (CMV) and GFP gene for expression of inserted com-

plementary DNA (cDNA) shown in Figure 4A. Briefly, final concentration of plasmids at 0.5 mg/mL (in Figure 4B) or 5 mg/mL

(in Figures 4C, 6A–6K, S4B, S4C, S5E, S5F, S5J, S5K, S5M, and S6A–S6C) was diluted in 0.9% NaCl solution. Mice were injected

with the 0.9%NaCl solution/plasmid mix into the lateral tail vein with a total volume corresponding to 10% of body weight in 5-7 sec-

onds. Plasmid DNA could be efficiently delivered into hepatocytes through the vena cava and central vein by relatively high-pressure

tail vein injection. For bulk transcriptome analysis, IL-6 at 5 mg/mL were delivered into liver by HDTVi, which induced 98% of hepa-

tocytes as SOX9+HNF4a+ cells, from which all hepatocytes were isolated for transcriptome analysis.

Histology and immunostaining
For paraffin sections, liver samples were fixed in 4% PFA (4 �C) overnight and embedded in paraffin blocks next day. Immunohisto-

chemistry staining and hematoxylin and eosin (H&E) staining were performed as previously described.70

For immunofluorescence, after antigen retrieved (AKOYA, NEL810001KT), paraffin sections (2 mm) were washed in TBST (0.1%

Tween-80 in TBS) for 2 min, blocked in antibody diluent (AKOYA, NEL810001KT) for 1 hour at room temperature, and stained

with primary antibody at 4 �C overnight. Primary antibodies included SOX9 (Millipore, Ab5535, 1:1000), OPN (R&D Systems,

AF808, 1:1000), HNF4a (Abcam, ab181604, 1:1000), GFP (Santa Cruz, sc-9996, 1:200), RFP (Rockland, 600-401-379, 1:500),

Ki67 (Abcam, ab15580, 1:1000), F4/80 (CST, 70076, 1:1000), CLEC4F (R&D Systems, AF2784, 1:1000), YAP (CST, 14074,

1:1000), pSTAT3 (CST, 9145, 1:100). Primary antibodies were detected using OpalTM 4-Color Manual IHC Kit (AKOYA,

NEL810001KT) on paraffin sections according to the manufacturer’s protocol. Sections were stained with DAPI (4’,6-Diamidino-

2-Phenylindole) and mounted with fluorescence mounting medium (Dako). Images were taken using an Olympus BX51 microscope

or a confocal microscopy Leica TCS SP8 WLL. Images in different channels were merged by ImageJ software.
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To describe the distribution and density of LPLCs and macrophages (KCs and MoMFs), fluorescent signals of LPLCs (SOX9+

HNF4a+), macrophages (F4/80+), KCs (CLEC4F+F4/80+) and MoMFs (CLEC4F-F4/80+) were converted to digital signals using the

‘spot’ function in Imaris software. Position coordinates of each spot were analyzed by Two-Dimensional Kernel Density Estimation,

and plotted via the ‘ggplot2’ package in R to quantify the cell distribution and density. To characterize the distribution of LPLCs and

KCs across the liver lobule, the parenchymal area between one central vein to the most adjacent portal vein was equally divided into

nine layers along the central-portal axis and the position of a cell in the lobule was determined by the relative distance to the portal

vein and the central vein.

Blood biochemical analysis
Blood was collected and stored at 4 �C for one hour. Freshly isolated serum was obtained by centrifuging the blood at 12,000 g for

10 min and stored at -80 �C before use. ALP, TBA, ALT, AST, T-BIL, and blood glucose levels were detected according to the man-

ufacturer’s instructions (Shanghai Shensuo UNF Medical Diagnostic Articles Co., Ltd.). Activated partial thromboplastin time (APTT)

was measured using an automated coagulation monitoring device (Teco, MC-4000, Germany) with a maximum recorded value

of > 96 seconds.

The in vivo reporter assay
The Sox9-sitewas cloned from 2 kb upstream of ATGwithin STAT3-binding peak. The Spp1-sitewas cloned from 17 kb upstream of

transcription start sites (TSS), i.e. the first distal STAT3-binding peak before TSS. Sox9-site and Spp1-site were then cloned into the

front of a mCherry reporter vector. Plasmids of Sox9-site-mcherry and Spp1-site-HSVtk promoter-mcherry were efficiently trans-

fected into mouse livers via HDTVi.

Flow cytometry, cell sorting and cell culture
All liver cells were isolated from normal or DDC-injured mouse livers by a modified two-step liver collagenase perfusion method.

Perfused liver cells were filtered through a 70 mmfilter (BD Bioscience). Non-parenchymal cells, including biliary epithelial cells, endo-

thelial cells, hepatic stellate cells, macrophages, neutrophils and intrahepatic lymphocytes, were further purified by low speed gravity

centrifugation (50 g 3 1 min 3 2) and medium speed gravity centrifugation (500 g 3 5 min 3 1) as previously described.71 Antibody

staining was carried out in FACS buffer for 30 min at 4 �C at the dilution of 1:200 after Fc blocking antibody (anti-CD16/CD32,

BioLegend, 156604). Primary antibodies against CD45 (Thermo Fisher Scientific, A15395), CD11b (Thermo Fisher Scientific, 11-

0112-82, 47-0118-41), CD3 (Thermo Fisher Scientific, 17-0031-82), CD19 (Thermo Fisher Scientific, 17-0193-82), NK1.1 (Thermo

Fisher Scientific, 17-5941-82), TIM-4 (Thermo Fisher Scientific, 12-5866-82), TIM-4 (BD Bioscience, 742773), CD38 (BioLegend,

102705), F4/80 (Thermo Fisher Scientific, 12-4801-82, 17-4801-80), F4/80 (BioLegend, 123137), LY6C (Thermo Fisher Scientific,

17-5932-80, 25-5932-82), LY6G (Thermo Fisher Scientific, 17-9668-82) and IL-6 (Thermo Fisher Scientific, 12-7061-82) were used

for flow cytometry analysis and cell sorting. Absolute number of cells were calculated via Precision Count Beads (BioLegend,

424902). SampleswerewashedwithFACSbuffer and resuspended inmediumcontaining1mg/mLDAPI. Thecellswereanalyzedusing

cytoflex LX orBDLSRFortessa. Cellswere sortedusingBDAria III. Datawere generated using FlowJoV10 (https://www.flowjo.com/).

To measure intracellular cytokine IL-6, 0.5-5 3 106 non-parenchymal cells were incubated for 2-4 h at 37 �C in DMEM with 10%

FCS and 13 brefeldin A (BioLegend). After incubation, cells were stained extracellularly as above. Intracellular cytokine staining was

performed by fixing and permeabilizing extracellularly stained cells according to the manufacturer’s instructions using the Intracel-

lular Fixation & Permeabilization Buffer (Thermo Fisher Scientific, 88-8824-00). The cells were analyzed using cytoflex LX or BD LSR

Fortessa. Data were generated using FlowJo.

To analyze the direct effects of DDC on KCs, freshly isolated KCs from normal livers were treated with DDC at 10 mg/mL or

100 mg/mL in vitro. Cells were harvested to analyze the gene expression levels and cell number after 6 hours or 24 hours of incubation.

RNA isolation, qRT-PCR and bulk RNA-seq
Hepatocyteswere isolated frommouse livers by amodified two-step liver collagenase perfusionmethod. Perfused hepatocyteswere

filtered through a 70 mmfilter (BDBioscience) and were further purified by a series of low-speed gravity centrifugation (50 g3 1min3

3) as previously described.72 Total RNA of all hepatocytes was extracted using Trizol (Invitrogen) according to the manufacturer’s

instructions. The total RNA was quantified and reverse transcribed to obtain the total cDNA. Gene expression was then assayed

by quantitative real-time polymerase chain reaction (qRT-PCR) using power SYBR green (Thermo Fisher Scientific) on an ABI

StepOnePlus real-time PCR system (Applied Biosystems). Gene expression values were normalized to an internal control of Gapdh.

For bulk RNA-seq, sequencing library was prepared from onemicrogram of total RNA using Illumina TruSeq RNA Sample Prep Kit.

Paired-end 150 bp read length sequencing was performed on Illumina Hiseq 4000 sequencer.

To gain transcriptome profiling of immune cells, the low-cell number RNA-seq was applied. Briefly, approximately 20,000 T cells

(CD45+CD11b-CD3e+), neutrophils (CD45+CD11b+Ly6G+), macrophages (CD45+CD11bloLy6G-F4/80+), monocytes (CD45+CD11b+

Ly6G-F4/80-Ly6C+or-) from normal and DDC-injured mouse livers were harvested by FACS. Cell samples were lysed in 50 mL of 4 M

guanidine isothiocyanate solution (GuSCN, Invitrogen, 15577-018) at 45 �C for 15 min. Total RNAwas precipitated and concentrated

by adding 150 mL of nuclease-free water, 600 mL of ethanol, 20 mL of acetate sodium (pH 5.7, 3 M, Ambion) and 1.5 mL of carrier
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glycogen (20 mg/mL, Roche). Then total RNA pellets were dissolved in lysis solution and reverse-transcribed and amplified with a

modified Smart-seq2 PCR technique, followed by sequencing on Illumina HiSeq 4000. The detailed steps were described

previously.73

Single-cell RNA-seq
For Smart-seq2 scRNA-seq, a modified Smart-seq2 protocol was applied.74–76 Sox9-EGFPmice were pretreated with DDC injury for

0 day or 7 days. Hepatocytes were purified as previously described.72 Injured hepatocytes and LPLCs from DDC-injured livers were

isolated by sorting GFP- or GFP+ hepatocytes by the BD influx cell sorter based on size/granularity and GFP expression. Normal he-

patocytes from normal livers were isolated based on size/granularity. After FACS purification, a single hepatocyte was placed into the

lysis buffer by the mouth pipette. The reverse transcription reaction was performed with 25 nt oligo (dT) primer anchored with an 8 nt

cell-specific barcode and 8 nt uniquemolecular identifiers (UMI).77 After the first-strand synthesis, the second-strand cDNAwas syn-

thesized, and the cDNA was amplified by 14 cycles of PCR. The amplified cDNA of single cells was then pooled together for the

following steps. Biotinylated pre-indexed primers were used to further amplify the PCR product by an additional 4 cycles of PCR

to introduce biotin tags to the 3’ ends of the amplified cDNAs. Approximately 300 ng cDNA was sheared to approximately 300 bp

by Covaris S2, and the 3’ terminal of the cDNA was captured by Dynabeads� MyOne Streptavidin C1 beads (Thermo Fisher).

The RNA-seq library was constructed using a Kapa Hyper Prep Kit (Kapa Biosystems) and subjected to 150 bp paired-end

sequencing on an Illumina HiSeq 4000 platform (sequenced by Annoroad).

For 10X pipeline, isolated hepatocytes or enriched macrophages were processed using the Chromium Single Cell 30 (v3 Chem-

istry) platform (10X Genomics, Pleasanton, CA). Briefly, for hepatocytes, 10,782 cells from normal livers, DDC-injured livers and

macrophage-depleted DDC-injured livers were pooled and sequenced on Novaseq lanes by Novagene AIT. After anti-F4/80 (Ebio-

science, 13-4801-82, 1:200) staining and MACS based on anti-Biotin Microbeads (Miltenyi, 130-105-637) using AutoMACS Pro for

enriched macrophages, 10,210 non-parenchymal cells from normal livers (Rosa26-mTmG mice, for denoting normal liver-derived

cells based on mTomato expression) and DDC-injured livers were pooled and sequenced on Novaseq lanes by Novagene AIT.

ChIP-seq
Hepatocytes were isolated and purified as previously described.72 For chromatin immunoprecipitation (ChIP) assay of pSTAT3 in IL-6

induced LPLCs, 1 3 107 cells were cross-linked with 1% formaldehyde for 15 min, followed by glycine quenching for 5 min. After

washing in PBS, nuclear extracts were further generated using SimpleChIP� Plus Sonication Chromatin IP Kit (CST, 56383) accord-

ing to the manufacturer’s instructions. For H3K27ac ChIP, E12.5 DLK1+ hepatoblasts, normal-diet mature hepatocytes and

tdTomato+ LPLCs from DDC-injured Sox9-CreERT2;Rosa26-LSL-tdTomato livers (tracing by intraperitoneal injection of 50 mg/kg

tamoxifen) were obtained. Chromatin was fragmented using Q-sonic sonication (20s on, 40s off at total 54 cycles). The following an-

tibodies were used for immunoprecipitation solubilized chromatin: pSTAT3 (CST, 9145, 1:100), H3K27ac (Abcam, ab4729, 1:500)

and normal rabbit IgG (CST, 2729P, 1:100) at 4 �C overnight. Antibody chromatin complexes were pulled down with Protein G

Dynabeads (Life Technologies, 10004D), washed and eluted. Chromatin cross-links were reversed, and samples were treated

with proteinase K and RNase A. Input and ChIP DNA was extracted with the MinElute PCR purification kit (QIAGEN) and quantified

with the Qubit (Life Technologies). For ChIP-seq, purified ChIP DNAwas used to prepare sequencing libraries via NEBNext Ultra DNA

Library Prep Kit for the Illumina (E7370) and sequenced on Illumina Novaseq 6000 sequencer to obtain 150 bp paired-end reads.

Schematics
Schematic cartoons in Figures 4M, 5A, and S6F and Graphical Abstract were created with BioRender.com.

Feature quantification for scRNA-seq data
For 10X dataset, sequencing reads were aligned to the mouse reference genome (mm10) and estimated cell-containing partitions

and associated UMI using the Cell Ranger (v6.0.1) single-cell software suite. For Smart-seq2 dataset, nine pair-end libraries, each

containing sequencing reads from dozens of single cells, were constructed. For each library, the template switch oligo (TSO) se-

quences were trimmed by cutadapt (v1.14),48 and the low-quality bases at 3’ end of reads were trimmed by trimmomatic

(v0.36).49 After that, demultiplex was done by fastx toolkit (v0.0.13) (http://hannonlab.cshl.edu/fastx_toolkit). Since we introduced

UMI in our Smart-seq2 protocol, we then tagged the UMI sequence to the read name of each sequence by umi_tools.50 Thus, we

got tagged FASTQ files for every assessed cell. As the read2 was mainly composed of polyA sequences, we aligned only read1

of individual FASTQ files to mm10 using STAR aligner (v2.5.2b).51 Htseq-count (v0.6.0)52 were used to get UMI count table. Overall,

deep sequencing was achieved in our study. For macrophage, the mean total UMI per cell was �13,600. The mean number of gene

detected per cell was 3,412. For hepatocyte, the mean total UMI per cell of 10X and Smart-seq2 data were �15,000 and �624,500,

respectively. And the mean number of gene detected per cell for 10X and Smart-seq2 data were greater than 2,700 and 8,300,

respectively. Saturation analysis of Smart-seq2 data revealed that 100,000 UMI of individual cells were enough to detect over

7,500 genes. For hepatocytes sequenced by 10X Chromium platform, the mean and the median mitochondrial (MT) gene content

are 9.85%and 6.94%, respectively. For hepatocytes sequenced by Smart-seq2 platform, themean and themedianMT gene content

are 5.41% and 4.72%, respectively. To guarantee the quality of downstream analysis, we only retained hepatocytes with MT gene

content less than 10%.
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Quality control of scRNA-Seq data
To further acquire more informative datasets, strict criteria were applied to select high-quality cells. The Seurat (v4.0.1)53,78 R pack-

age was employed to perform scRNA-Seq data analysis. For macrophage dataset, cells with total gene detected > 1,500 and mito-

chondrial (MT) gene content < 5% were selected. For hepatocyte, cells with total UMI > 4,000, number of detected gene > 800, and

MT gene proportion < 10% in 10X dataset and cells with total UMI > 100,000 andMT gene content < 10% in Smart-seq2 dataset were

selected for the following analysis. After filtering, datasets of different batcheswere normalized independently with SCTransform. The

reciprocal PCA (RPCA)-based integration and graph-based clustering were performed to identify non-hepatocyte contaminants.

Cells expressing high level of immune markers (Cd163, Cd68, Clec4f, and Timd4) were found in hepatocyte datasets. These were

excluded from downstream analysis. To evaluate the effects of liver dissociation to our scRNA-Seq datasets, AddModuleScore func-

tion was used to assess the module scores of stress response genes in hepatocytes.17

Clustering and trajectory inferring
After quality control, 6,246 and 327 hepatocytes from 10X and Smart-seq2 pipeline left, respectively. For cells sequenced by 10X

pipeline, we conducted re-normalization (SCTransform), RPCA-based integration (FindIntegrationAnchors and IntegrateData func-

tion), and subsequent clustering (FindClusters with res = 1.5) analysis. The effect of total UMI and MT-gene content were regressed

out when normalization. Four-thousand most variable genes were used for analysis. Uniform manifold approximation and projection

(UMAP) is used for visualization. Cellular trajectory was constructed using monocle3 (v1.0.0)54,79 R package. To ensure consistency

between hepatocyte subpopulations and cellular trajectory, we conducted pseudo-temporal analysis in a semi-supervised manner

that the principal component (PC) values generated from Seurat integrated dataset were used as the input of ‘reduce_dimension’

function in monocle3. To validate the cellular subpopulations and trajectory found in 10X dataset, Smart-seq2 data containing cells

assessed in two batches was analyzed independently using the same pipeline descripted above.

Identification of hepatocytes subpopulations
To increase the power, the 10X libraries were prepared pooling normal and DDC-diet hepatocytes together. To distinguish them, a

public dataset (GSE125688)40 and our Smart-seq2 dataset in which the normal and DDC-diet hepatocytes were assessed separately

were used. The normal and DDC signature genes were identified as DEGs (|log2FC| > 1.5, adjusted P value < 0.05) between two con-

ditions. Genes with high expression level in the opposite condition (rank of median expression level <= 500) were removed from

signature. AddModuleScore function was used to score these two signatures of all cells in 10X datasets. By subtracting DDC signa-

ture score from normal signatures, we got N-score for each cell. Cells with N-score greater than 0 were regarded as normal hepa-

tocytes. For DDC-diet cells (Figure 1C), FindAllMarkers function was used to calculate the feature genes of each cluster. Clusters

were grouped into subpopulations according to the expression pattern of feature genes (Figure S1E). These subpopulations were

annotated according to feature gene, pseudotime, and locations on cellular trajectory.

Identification of RRGs
As the hepatic reprogramming goes from normal hepatocytes to injured hepatocytes and finally LPLCs, two types of gene were

considered significantly associated with this process: (1) significantly upregulated in LPLCs (log2FC > 0.35, adjusted P value < 0.05)

compared to both normal hepatocytes and injured hepatocytes; (2) exclusively expressed in LPLCs (log2FC > 0.35, adjusted

P value < 0.05, percentage of LPLCs expressing corresponding gene > 0.25, and percentage of non-LPLCs expressing correspond-

ing genes < 0.1). To further decrease the false positive rate, bulk RNA-Seq samples of enriched normal hepatocytes and LPLCs were

also used. Genes with high expression level (log2FPKM >= 6) in normal hepatocytes were removed. For the rest genes, those with

log2(LPLCs/normal hepatocytes) > 0.5 in bulk RNA-Seq samples were retained. For the full list of RRGs, please refer to Table S1. To

evaluate whether Sox9 and RRGs were activated in APAP-induced liver injury, the processed Seurat R object was downloaded from

a previously published study.39 And the module scores of RRGs for individual hepatocytes were assessed by AddModuleScore

function.

scRNA-Seq data analysis of immune cells
After normalization, 3,000 MVGs were selected. Principle component analysis was conducted based on the scaled expression level

of MVGs. Robust PCs (PC1 to 15) were identified and used for further dimension reduction and neighbor detection. Clustering was

conducted using FindClusters function with resolution set to 0.5. Cells of different clusters were annotated according to expression of

marker genes. Mann–Whitney U tests were used to identify differential expressed cytokines among immune cell populations. The list

of mouse cytokines was collected from UniProt (https://www.uniprot.org). To delineate the heterogeneity of DDC-treated Kupffer

cells, they were extracted, re-normalized, and re-clustered. For the full list of feature genes and enriched pathways of two subpop-

ulations in DDC_KC, please refer to Table S3.

Pseudotime-based pathway activity analysis
To unravel pathway dynamics along hepatocyte reprogramming, we assessed single-cell pathway activity by calculating normalized

enrichment score (NES) on Reactome pathway (https://reactome.org) using GSVA R package (v1.38.2).56 Log-scaled SCTransform-

normalizedUMImatrix was provided to gsva function. The limmaRpackage (v3.46.0)57 was used to perform pairwise comparisons of

NES values between cell subpopulations. Pathways that showed significant changes (|log2FC| > 0.1 and FDR adjusted P value < 0.05)
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between any two subpopulations were selected. And un-supervised hierarchical clustering was performed (pheatmap R package

v1.0.12) to these pathways to decipher their changing patterns along hepatocyte reprogramming. Given the highly noised nature

of scRNA-seq data, we performed de-noising processing before clustering. For each selected pathway, we fitted a smooth curve

between NES values and pseudotime (loess fit, span = 0.75). The de-noised NES values were calculated as predicted NES values

against original pseudotime. Given that cells under same state were likely assigned similar pseudotime, we divided the whole

time to 0.05 size long time bins. For each time bin, the corresponding pathway activity was calculated as the mean de-noised

NES values of all cells within the bin. Thus, the smoothed NES table, whose row represent pathways, columns represent time

bins, was used for clustering analysis. The smoothed NES table that generates Figure 1H was provided as Table S2.

Bulk RNA-seq data analysis
The sequencing reads weremapped to themm10 using STAR algorithm. Htseq-count algorithmwas used to count readsmapped to

each gene uniquely. DESeq258 R package was used to detect differentially expressed genes (DEGs) between groups. ClusterProfiler

(v3.18.1)59 R package was used to perform enrichment analysis of gene sets to Reactome pathway. Gene Set Enrichment Analysis

(GSEA)55 was employed to detect gene sets that exhibited significant differences between given groups. Heatmaps that represent

gene expression pattern across groups were generated with pheamap.

ChIP-seq data analysis
All trimmed sequencing reads were aligned to Mm10 (mouse genome) by using Bowtie2.60 Peak calling was identified using MACS

v2.1.161 with the q-value cut-off of 0.05. Biological replicates showed high degree of similarity so the replicate data were subse-

quently combined and processed. Heatmap and signal tracks of STAT3 and H3K27ac were presented by deepTools v2.5.362 and

Integrative Genomics Viewer (IGV) software.63 For identification of STAT3 and H3K27ac peaks in reprogramming-related genes,

nearby cis-elements were identified via GREAT.64

ATAC-seq data analysis
ATAC-seq data of Arid1a-WT hepatocytes, Arid1a-KO hepatocytes and LPLCs were retrieved from published ATAC-seq data

(GSE111502). Sequence aligning, peaks calling, and visualization were generated as described for CHIP-seq data analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experimental data were presented as themean ± SD. ‘‘n’’ represented the number of animals andwas indicated in the Figures and

Figure legends. For quantification of liver sections, three to five random periportal fields of each liver samples unless otherwise spec-

ified were imaged and then quantified using Image J or QuPath v0.2.3. No statistical method was used to predetermine sample size.

All siblings with indicated genotypes were randomly used in this study. Sample processing was not blinded. For statistic evaluation,

an unpaired two-sided Student’s t-test was performed using Graphpad Prism 8 software and mentioned in the Figure legends.
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