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A Disentangled generative model for improved drug response prediction in patients 

via sample synthesis 

 

1. Introduction 

The prediction of personalized drug responses from molecular omics is important for 

precision medicine [1]. Large-scale omics data coupled with high-throughput drug 

sensitivities experiments have generated pharmacogenomic landscapes for many 

preclinical cancer models, such as cell lines, organoids and patient-derived tumor 

xenograft (PDX) mouse models. Various computational methods for drug response 

prediction have been developed and achieved satisfactory accuracy by cross-

validation in one large preclinical dataset [1-9]. However, the application of these 

methods to predict the therapeutic effects of patients often results in obvious 

performance decreases [8]. The clinical applicability of prediction methods trained on 

preclinical cancer models remains an important challenge. 

The discrepancies between preclinical cancer models and patient tumors stem from 

systematic differences in their biological characteristics, such as their 

microenvironments and cellular heterogeneity, as well as differences in experimental 

technologies, such as drug sensitivity measurements and gene expression profiling. To 

address these discrepancies, initial endeavors focused on aligning the transcriptional 

profiles of cell lines with those of patient tumors using statistical frameworks. 

Subsequently, drug response was predicted through regression, machine learning or 

deep learning methodologies. For example, combat, which is the commonly used 

batch-effect correction method, is utilized to homogenize cell line and patient datasets 

[3, 10]; Patient response estimation corrected by interpolation of subspace 

embeddings (PRECISE) [11] extracts consensus features by subspace alignment via 

principal component analysis (PCA); Celligner [12] identifies correlated variability 

that is more prevalent in either the tumor data or the cell line data by contrastive PCA; 

and Tumor response assessment by nonlinear subspace alignment of cell lines and 

tumors (TRANSACT) [13] captures the biological signals common to both preclinical 

models and tumors by nonlinear kernel PCA. 

Leveraging the rapid advancements in artificial intelligence (AI) algorithms, recent 

studies have used domain adaptation (DA) techniques [14-16] and few-short learning 

technologies [17] to enhance the process of transferring knowledge from preclinical 
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models to patient tumors. Using large labeled preclinical pharmacogenomic datasets 

as the source domain and unlabeled clinical datasets as the target domain, the core aim 

of DA methods is to extract shared components from two domains. Adversarial 

inductive transfer learning (AITL) [14] employs adversarial inductive DA to adapt not 

only the input space but also the output space; Task uncertainty guided domain 

adaptation (TUGDA) [15] is a multi-task DA framework using task uncertainty and 

covariate-shift to improve the robustness of drug response prediction; and the context-

aware deconfounding autoencoder (CODE-AE) [16] is a context-aware 

deconfounding autoencoder that can distinguish domain shared signals from 

uninteresting confounders. The classical batch-effect correction methods, PCA-based 

alignment methods, and most DA methods, such as AITL or TUGDA, require 

molecular data from both preclinical models and patient tumors during training. 

Moreover, AITL [14] and Transfer of Cell Line Response Prediction (TCRP) [17] 

require drug response labels from patients during training, limiting their practical 

applicability. CODE-AE implements a pretraining scheme utilizing unlabeled patient 

data, enabling the training process without the need for labeled patients. This feature 

enhances its suitability for a wider range of real-world application scenarios [16] . 

Although significant advances in DA methods for drug response prediction have been 

reported, several potential shortcomings remain. Firstly, existing DA methods 

overlook features within domain-private components that may encode tumor 

microenvironment-related information. Secondly, due to the high heterogeneity of 

tumors and inadequate training datasets, existing methods may yield suboptimal 

predictions when the test data are outside the distribution of training data.  

A promising way to address these bottlenecks is the utility of synthetically generated 

data for training, which is being increasingly popular in computer science [18-24]. 

Typically, it is necessary to disentangle the input features and remix them 

subsequently at sample or feature level to generate synthetic samples [18, 22, 25, 26]. 

In bioinformatics and medicine, data synthesis methods have also been utilized in 

practical applications such as medical image analysis and drug discovery [23]. Gao et 

al. [24] demonstrated the effectiveness of synthesized X-ray images in hip imaging 

and lesion segmentations. Kadurin et al. [27] applied a generative adversarial 

autoencoder, using a latent neuron for the growth inhibition percentage of tumor cells 

post-treatment to generate candidate molecular which has potential applications in 

cancer therapy. Polykovskiy et al. [28] proposed an entangled conditional adversarial 
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autoencoder for de novo drug discovery, reporting efficient in vitro activity of a newly 

discovered molecule. These applications utilized high-quality synthetic data to 

enhance model robustness, addressed challenges associated with limited annotated 

datasets, which could also eliminate privacy and ethical concerns from real data. They 

emphasized the potential and importance of synthetic data in advancing medical 

research and drug development. 

Based on this, we proposed a novel disentangled synthesis transfer network (DiSyn) 

to improve the generalizability of drug response prediction. Its core idea is to separate 

features related to drug response and features private for different domains and then 

synthesize new samples to increase the data size and improve the prediction of label-

lacked target domains. Three datasets involving cancer patients and tumor-bearing 

mice were used to evaluate the performance of DiSyn. The benchmark results showed 

that DiSyn achieved significant improvement compared to eighteen baseline methods. 

The contributions of decoupling and synthetic techniques were further demonstrated 

by visualizing latent features and performing an ablation study. We also applied 

DiSyn to estimate the drug response of breast cancer patients and explored drug 

sensitivity-related biomarkers based on the predicted results. 

 

2. Methods 

2.1 Problem formulation 

First, we introduce the problem formulation used in the article. A domain includes 

two components [29]: a feature space 𝒳 and a marginal probability distribution 

𝑃(𝑋), where 𝑋 = {𝑥1, … , 𝑥𝑛} ∈ 𝒳. Given a specific domain 𝒟 = {𝒳, 𝑃(𝑋)}, a task 

also includes two components: a label space 𝒴 and an objective predictive function 

𝑓(∙). In this article, we refer to the labeled dataset from the source domain as 𝐷𝑆 =

{(𝑥𝑖
𝑠 , 𝑦𝑖

𝑠)}𝑁𝑠
, where 𝑥𝑖

𝑠 ∈ 𝒳𝑠 is denoted as the 𝑖th instance of 𝑁𝑠 gene expression 

profiles from the cell line and 𝑦𝑖
𝑠 ∈ 𝒴𝑠

 is its drug response label. Similarly, we 

denote the unlabeled dataset from the target domain as 𝐷𝑇 = {𝑥𝑖
𝑡}𝑁𝑡

, where 𝑥𝑖
𝑡 ∈ 𝒳𝑇 

is the 𝑖th instance of 𝑁𝑇 gene expression profiles from patients. 

 

2.2 DiSyn architecture 

DiSyn aims to construct drug response prediction models from source domain(well-

labeled) and apply them to target domain(label-lacked), specifically from cancer cell 
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lines to clinical patients. The core strategy of DiSyn involves isolating drug response-

related features from the input and enhancing prediction accuracy in target domains 

by generating and incorporating synthetic samples. These processes mutually iterate 

during training, ensuring that the model continually improves its performance in 

domains with limited or no labels (Fig. 1A). We refer to the factors that are relevant 

for specific drug responses as drug-specific features and those that are not relevant for 

specific drug responses as unspecific features [30, 31].  

 

2.2.1 Task-specific training with pretraining-based DA 

DiSyn takes gene expression profiles from the source domain (cancer cell lines) and 

target domain (e.g., patient tumors) as input, using a domain separation network [32] 

as a backbone to perform DA. Input samples from each domain are partitioned into 

two subspaces: features that are private within each domain and features that are 

shared across domains. The loss function can be defined as 

𝐿𝐷𝐴 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝛼 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝛽 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (1.) 

where α and β are hyperparameters, 𝐿recon is used for the reconstruction of the 

input data, 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is an orthogonality constraint to push the common and private 

features apart, and 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 is designed to encourage the common features from 

two domains to be as close as possible. 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 can be either the maximum mean 

discrepancy [33] (MMD) or adversarial loss [34] (ADV). The detailed 

implementations are described in the supplementary methods. 

Next, DiSyn used a drug-specific training phase to learn the response information 

specific to each drug. The activation of 𝐸𝑑𝑟𝑢𝑔_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 is trained to predict the drug 

response to a given the cell-line input. The loss is defined by 

𝐿𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = − ∑ 𝑦𝑖 log �̂�𝑖

𝑁𝑠

𝑖=1

 (2.) 

where 𝑦𝑖 and �̂�𝑖 are the real and predicted drug response labels, respectively, of 

sample 𝑥𝑖
𝑠 in the source domain. Through this process, DiSyn obtains drug-specific 

features from the encoder 𝑬𝑑𝑟𝑢𝑔_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐. 

 

2.2.2 Disentanglement and synthesis iteratively update the task-specific encoder 

In the disentanglement step, 𝑬𝑑𝑟𝑢𝑔_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 is kept fixed to train two encoders 

Jo
urn

al 
Pre-

pro
of



𝑬𝑑𝑟𝑢𝑔_𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑠  and 𝑬𝑑𝑟𝑢𝑔_𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑡 , which extract information unrelated to specific 

drug responses from the source and target domains. The loss function can be denoted 

as  

𝐿 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜎 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (3.) 

where 𝜎 is a hyperparameter and 𝐿𝑟𝑒𝑐𝑜𝑛 and 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 are consistent with earlier 

definitions. This step obtains unspecific information from encoders 𝑬𝑑𝑟𝑢𝑔_𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑠  

and 𝑬𝑑𝑟𝑢𝑔_𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑡 . 

After dividing the input space into drug-specific features and nonspecific features, we 

can employ attribute swapping and decoupling synthesis to generate synthetic data 

(𝑥𝑖
𝑠𝑦𝑛

 , 𝑦𝑖
𝑠𝑦𝑛

). As shown in Fig. 1B, the drug response labels and drug-specific 

features of synthetic data originate from the source domain, while the unspecific 

features originate from the target domain.  

𝑥𝑖
𝑠𝑦𝑛

= 𝑫{concat([𝑬𝑑𝑟𝑢𝑔_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐(𝑥𝑖
𝑠), 𝑬𝑑𝑟𝑢𝑔_𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑡 (𝑥𝑗
𝑡)])} (4.) 

 

𝑦𝑖
𝑠𝑦𝑛

= 𝑦𝑖
𝑠 (5.) 

where (𝑥𝑖
𝑠 , 𝑦𝑖

𝑠) is a labeled cell line sample for the specific drug and 𝑥𝑗
𝑡 is an 

unlabeled target sample.  𝑫 is the decoder, and concat(⋅) is the vector 

concatenation operation. 

Then, we can further update the unspecific feature extractors with synthetic data. The 

loss function is composed of three parts as follows: 

𝐿 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜎 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝜆 ∗ 𝐿𝑎𝑑𝑣_𝑐𝑙𝑎𝑠𝑠 (6.) 

𝐿𝑟𝑒𝑐𝑜𝑛 =
1

𝑁𝑠
 ∑‖𝑥𝑖 − �̂�𝑖‖

𝑁𝑠

i=1

+ 
1

𝑁𝑠𝑦𝑛
 ∑ ‖𝑥𝑖 − �̂�𝑖‖

𝑁𝑠𝑦𝑛

i=1

(7.) 

 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ‖𝑡𝑟𝑎𝑛𝑠(𝐻𝑐
𝑠 ) · 𝐻𝑝

𝑠‖
𝐹

2
+ ‖𝑡𝑟𝑎𝑛𝑠(𝐻𝑐

𝑠𝑦𝑛 
) · 𝐻𝑝

syn
‖

𝐹

2
 (8.) 

𝐿𝑎𝑑𝑣_𝑐𝑙𝑎𝑠𝑠 =  − ∑ 𝑦𝑖 log �̂�𝑖

𝑁𝑠+𝑁𝑠𝑦𝑛

𝑖=1

  (9.) 

where σ and λ are hyperparameters, 𝑁𝑠 and 𝑁𝑠𝑦𝑛 are the number of samples in the 

source domain and synthetic data, 𝑦𝑖 is the ground truth drug response label of 

sample 𝑥𝑖 , �̂�𝑖 is the corresponding predicted label, ‖·‖𝐹
2  is the squared Frobenius 

norm, and 𝑡𝑟𝑎𝑛𝑠(⋅) is the matrix transposition. 𝐻𝑐
𝑠
 and 𝐻𝑝

𝑠
 are matrices whose 

rows are drug-specific and drug-unspecfic latent features of source samples obtained 
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from the encoders  𝑬𝑑𝑟𝑢𝑔_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 and 𝑬𝑑𝑟𝑢𝑔_𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑠 . Similarly, 𝐻𝑐

𝑠𝑦𝑛
 and 𝐻𝑝

syn
 

are matrices with latent features of synthetic samples. 

The synthetic data generated in the disentanglement step can be further involved in 

the task-specific training stage, which slightly modifies the loss function 𝐿𝑟𝑒𝑠𝑝𝑛𝑜𝑠𝑒 as 

follows: 

𝐿𝑟𝑒𝑠𝑝𝑛𝑜𝑠𝑒 =  − ∑ 𝑦𝑖 log �̂�𝑖

𝑁𝑠+𝑁𝑠𝑦𝑛

𝑖=1

  (10.) 

 

Source code that produced the findings of the study, including all main and 

supplemental figures, is available at https://github.com/LiHongCSBLab/DiSyn. 

 

2.3 Experiment details 

2.3.1 Datasets 

We used the following datasets in our experiments (Please refer to Table S1 for more 

information): 

• The dataset from the Genomics of Drug Sensitivity in Cancer (GDSC) [35] consisted 

of gene expression profiles of 966 cancer cell lines from various cancer types 

experimented with 282 drugs. 

• The dataset from The Cancer Genome Atlas(TCGA) [36] comprised transcriptomic 

information from a total of 10237 patients with various types of cancer. Part of these 

individuals received drug treatments, among which 16 drugs were in common with 

GDSC, and their therapeutic responses were documented using the Response 

Evaluation Criteria in Solid Tumors (RECIST).  

• The dataset from the Novartis Institutes for Biomedical Research PDX Encyclopedia 

(NIBR PDXE) [37] involved 176 samples from different cancer types. Some of these 

were tested with 8 drugs that were also used in the GDSC. 

• The dataset from I-SPY 2 [38] consisted of 988 transcriptomic profiles from patients 

diagnosed with breast cancer. A portion of them received treatment with Paclitaxel. 

The gene expression profiles from GDSC [35] and tumor profiles from target datasets 

were used for pretraining. The expression profile of each gene was scaled by Max-

Min normalization. We employed a published method [39] to select the top 1000 

highly variable genes (HVGs) among the samples. HVGs from cell lines and patients 

were merged as input variables. The drug response AUC values of the cell lines were 
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obtained from the GDSC and were converted to binary labels by taking the median of 

each drug as the cutoff. The labeled GDSC cell lines were used as the source domain. 

Another three datasets (TCGA [36], I-SPY 2 [38] and NIBR PDXE [37]) were taken 

as the target domain, and their response labels were reserved for test datasets. 

Considering the sample size, we selected 23 drugs for testing, with 16 drugs from 

TCGA, eight drugs from PDX, and one drug from I-SPY 2 [38]. Patients from TCGA 

and I-SPY 2 data were partitioned into two subgroups based on RECIST: positive 

samples that had a partial or complete response and negative samples that had 

progressive or stable disease [40]. PDX mice were partitioned using the same criteria 

based on the modified RECIST criteria [37].  

The original GDSC, PDXE, TCGA and I-SPY 2 are all publicly available datasets. 

GDSC were downloaded from the portal website (https://www.cancerrxgene.org/). 

PDXE data were downloaded as supplementary information of the original paper [37]. 

TCGA data were obtained from the official website (https://portal.gdc.cancer.gov/). 

And I-SPY 2 data were downloaded from the GEO website 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040) and supplemental 

material of the original paper [38]. 

 

2.3.2 Training and evaluation 

We investigated the classification performance of DiSyn in three publicly available 

datasets: TCGA [36], I-SPY 2 [38], and NIBR PDXE [37] datasets. First, DiSyn was 

trained using a labeled cell line and unlabeled data from each target dataset to build 

separate classification models for each drug. To assess the robustness of DiSyn, we 

conducted 5 independent repeated experiments with different random seeds. In each 

experiment, we employed a five-fold cross-validation and reported the average 

performance of all the test folds. Source samples (cell lines from the GDSC) were 

partitioned into five folds in a stratified fashion by drug sensitivity for cross-

validation. With each runtime, we trained the model using 4/5 of the folds, while the 

remaining 1/5 was utilized as the validation set to search for the optimal 

hyperparameters (Table S2). The area under the receiver operating characteristic curve 

(AUROC) on the validation set was used as the stopping criterion because it is stable 

to changes in label distributions [41] and has been evaluated across various 

classification methods [15, 16]. For models with optimal parameters, we reported the 

average performance of all testing folds for multiple metrics, including AUROC, area 
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under the precision‒recall curve (AUPRC), accuracy (ACC), F1 score and average 

precision score (APS). 

 

2.3.3 Baseline methods 

Baseline methods refer to a set of established methods developed by previous 

researchers that serve as a point of comparison for evaluating the performance of our 

newly developed method DiSyn. Specifically, in the TCGA dataset, we compared 

DiSyn with various baseline methods for cross-dataset drug response prediction, 

including four classical machine learning approaches (random forest [42] , support 

vector machine (SVM) [43] , elastic net [44] and adaptive boosting (AdaBoost) [45]), 

nine deep learning models without considering domain differences (clinical response 

prediction using deep neural network (CRDNN) [3], DrugCell [7], prediction of 

anticancer compound sensitivity with multimodal attention-based neural networks 

(PaccMann) [5], variational autoencoder with elastic net strategy (VAEN) [2], multi-

omics late integration method based on deep neural networks (MOLI) [4], four twin 

graph neural networks for drug response prediction and a similarity augmentation 

module (TGSA) [6] variants with different omics data as input), and five state-of-the-

art methods addressing domain differences (AITL, TUGDA, PRECISE, TRANSACT, 

CODE-AE). 

All baseline methods were retrained using the GDSC cell line dataset with drug 

response labels. The unlabeled target datasets were also used for unsupervised 

pretraining. Due to the inductive hypothesis of AITL [14], the drug response labels of 

the test dataset were also used for supervised training. To ensure fairness, the setting 

of five experiment replicates and five-fold split settings for cross-validation were 

consistent across all baseline models and DiSyn. 

For classical machine learning approaches, we used the Python package scikit-learn to 

select the optimal parameters and train the models. For other methods, the training 

codes were downloaded from GitHub. For TRANSACT, we used the optimal 

hyperparameters mentioned in the article, and for most other models that have 

hyperparameter ranges in their projects, we employed these ranges for grid search to 

obtain the best hyperparameters. The specific parameter range we used for the grid 

search can be found in Table S2. 

 

2.3.4 Cell culture 
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The breast cell line (MDA-MB-231, obtained from American Type Culture 

Collection, Virginia, USA) was maintained in complete medium supplemented with 

12% fetal bovine serum (FBS, Shanghai XP Biomed Ltd, Shanghai, China), 100 

units/mL penicillin (New Cell & Molecular Biotech Co., Ltd, Jiangsu, China), and 

100 mg/mL streptomycin (New Cell & Molecular Biotech Co., Ltd, Jiangsu, China) at 

37 °C, 5% CO2 saturated humidity. 

 

2.3.5 Cell viability assay 

The cell viability was detected by Cell Counting Kit-8 (CCK-8) assays according to 

manufacturer’s instructions. Briefly, all cells were seeded in 96-wells plates at a density 

of 2000 cells per well. The corresponding concentrations of 5-Fluorouracil (5-FU, 

Sigma-Aldrich, St. Louis, MO, USA) and Gefitinib (Sigma-Aldrich, St. Louis, MO, 

USA) were added to continue the incubation for 6, 12, 24, 48, 72, 96 h, respectively. 

After treatment, the medium was removed and replaced with 110 µL of 10% CCK-8 

solution (New Cell & Molecular Biotech Co., Ltd, Jiangsu, China) in serum-free 

medium, and the cells were incubated at 37°C, 5% CO2 saturated humidity for 1.5 h. 

Then we detected an optical density 450 (OD450) of each well using Microplate Reader 

(BioTek, Biotek Winooski, Vermont, USA). 

 

3. Results 

3.1 DiSyn workflow 

Inspired by the domain separation network (DSN) [32], DiSyn adapts a novel 

disentangled transfer network that contains one common encoder, two private 

encoders, one decoder, and two adversarial discriminators (Fig. 1B). The unlabeled 

gene expression profiles from the source and target domains are inputted into the 

network for pretraining, which allows the common encoder to extract features shared 

between two domains. Next, task-specific training of the network is performed using 

the labeled samples from the source domain to update the common encoder to a drug-

specific encoder that captures drug response-related features. Then, the drug-specific 

features from the source domain and unspecific features from the target domain are 

combined by the decoder to synthesize new labeled samples, which are further 

involved in the disentangling process (Fig. 1C). By iterating between disentanglement 
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and synthesis, DiSyn progressively extracts effective features and enhances its 

predictive performance. 

To evaluate the effectiveness of DiSyn on drug response, the model was implemented 

on GDSC, which is a large-scale pharmacogenomic dataset of human cancer cell 

lines, and three target datasets: TCGA [36] (patients, sixteen drugs), I-SPY 2 [38] 

(patients, one drug) and NIBR PDXE [37] (mice, eight drugs) (Table S1). The 

expression profiles of 966 cell lines from the GDSC dataset [35] and corresponding 

samples from the target dataset [46] were used for unsupervised pretraining. Then, 

cell lines with drug response labels were used as the source domain to predict labels 

of target domain samples from another three datasets. 

 

3.2 DiSyn captures drug-specific features associated with therapeutic 

responses 

Taking GDSC dataset and TCGA cohorts as examples, we used t-distributed 

stochastic neighbor embedding (t-SNE) plots to visualize the low-dimensional 

representations of the feature spaces of the source and target samples during DiSyn 

training. At the beginning, the original gene expression profiles were clearly separated 

according to the t-SNE plot (Fig. 2A); such difference has also been observed in many 

studies [10, 12, 16]. After DiSyn pretraining, the latent features encoded from the 

shared encoder exhibited substantial overlap between the TCGA and GDSC samples 

(Fig. 2B), confirming the efficiency of DiSyn in domain alignment. Then, the drug-

specific encoder and unspecific encoders were derived from the first fine-tuning and 

disentanglement training phase. Taking paclitaxel as an example, the latent features 

obtained from the paclitaxel-specific encoder separated responders and non-

responders better than the latent features obtained from the drug-unspecific encoders. 

(Figs. 2C and D, distance = 9.78 and distance = 4.76. The distance was calculated 

based on the centroids of the responders and nonresponders respectively.) Moreover, 

the addition of synthetic data enlarged the gap between responders and non-

responders by improving the ability of the paclitaxel-specific encoder (Fig. 2E, 

distance = 26.58). The latent features encoded from the nonspecific drug encoders 

clearly indicate the sample domains instead of the drug response. (Figs. 2D and F) 

The results indicated that DiSyn gradually learned the shared drug-specific features 

between the source and target domains over the course of training. 
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3.3 DiSyn enhances the prediction accuracy in clinical settings 

To evaluate the model's transferability in the clinical context, we conducted 

comprehensive experiments using patient data from TCGA as the target domain. 

Comparisons between DiSyn and 18 baseline models were conducted across 16 drugs 

using five evaluation metrics: AUROC, AUPRC, APS, ACC and F1 score (Figs. 3A-

E, and Tables S2-7). The results indicated that DiSyn outperformed the baseline 

models across most of the metrics. We ranked all methods based on their performance 

on each drug. The average rankings of DiSyn across the 16 drugs were 1.19, 2.81, 

2.63, 2.50, and 4.75 for the AUROC, AUPRC, APS, ACC and F1 scores, respectively 

(Fig. 3F). These rankings were significantly better than those of all baseline models 

(P < 0.05). When the AUROC was used as the evaluation index, DiSyn achieved the 

best results, ranking first for 14 (87.5%) drugs. The average AUROC of DiSyn was 

0.775, representing a 15.36% improvement compared to the best baseline model (Fig. 

3A). For five independent experiments with different random seeds, the variations in 

the evaluation metrics are small, suggesting that DiSyn could offer robust predictions 

via hyperparameter optimization. 

It is worth mentioning that variations exist among different drugs regardless of the 

prediction method employed. The DiSyn predictions consistently demonstrated 

superior performance for vinorelbine, tamoxifen, bleomycin, etoposide, and 

vinblastine, with multiple metric values exceeding 0.8 (Figs. 3A-E). The effects of 

temozolomide and sorafenib are difficult to predict by any method. DiSyn, along with 

other state-of-the-art methods addressing domain differences (AITL, TUGDA, 

PRECISE, TRANSACT, and CODE-AE), obtained high AUROC and ACC but low 

AUPRC, APS and F1, while other deep learning methods without considering domain 

differences (CRDNN, DrugCell, PaccMann, VAEN, MOLI, and TGSA) obtained high 

AUPRC, APS and F1 but low AUROC and ACC. The reasons are multifaceted, 

potentially involving imbalanced sample sizes in the target domain or disparities in 

cancer types between the labeled source and target samples. 

We further evaluated DiSyn using another independent dataset, I-SPY 2 [38], in which 

two drugs, paclitaxel and MK-2206, were labeled in the GDSC cell line dataset. 

DiSyn was used to construct prediction models for paclitaxel and MK-2206. For 179 

patients treated with paclitaxel, DiSyn’s prediction achieved an improvement of 
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10.06% in the average AUROC score compared to the second-ranked baseline method 

(Fig. S1). The other 60 patients were treated with a combination of paclitaxel and 

MK-2206. We hypothesized that if the single-drug models predict a patient to be 

effective for both paclitaxel and MK-2206, this patient will be more likely to be truly 

effective when treated with combination therapy. According to this hypothesis, when 

patients who ranked in the top 20, 30, or 40 according to the two single-drug models 

were considered to be predicted as responders to combination therapy, the true 

positive rates were 100% (4/4), 87.5% (7/8), and 66.7% (8/12), respectively. This 

finding suggested that single-drug models built with DiSyn could also provide an 

insight into drug combinations. 

 

3.4 DiSyn improves the prediction accuracy of PDX models 

We utilized the NIBR PDXE data [37] as a target domain to evaluate the 

transferability of DiSyn to patient-derived xenograft models. Eight drugs shared in the 

PDX and GDSC datasets were selected for evaluation. We compared DiSyn with eight 

representative baseline models (Fig. 4, and Tables S8-12). Consistent with the results 

of the previous experiments, DiSyn showed a convincing predictive ability to transfer 

drug response information from cancer cell lines to patient-derived tumors, obtaining 

a 5.44% improvement in the average AUROC compared to that of the best baseline 

model across the eight drugs tested. With AUPRC and APS as metrics, DiSyn also 

demonstrated notable improvements of 12.17% and 10.73%, respectively. 

The overall improvement of DiSyn in the PDX dataset was slightly lower than that in 

the TCGA cohort, and DiSyn did not outperform baseline models consistently. The 

reason may be that the pretraining stage of DiSyn used the expression profiles of 176 

mice and 10237 patients when predicting the PDX and TCGA datasets, respectively. 

The relatively small sample size of the PDX model may have impeded the learning 

capacity of the DiSyn pretraining step. Accumulations of larger-scale cancer data may 

further improve DiSyn’s performance. 

 

3.5 Ablation study 

To further investigate the performance impact of different model components, we 

evaluated the performance of DiSyn with different variants, including different 

regularization strategies, different sample sizes and different numbers of iterations of 
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data synthesis. The distribution of AUROC values for 16 drugs in the TCGA dataset 

was used as the comparative index. Consistent with prior research [32], the 

adversarial regularization method(ADV) obtained a larger performance gain than the 

maximum mean discrepancy (MMD) regularization or the base models without 

adding the domain similarity loss (Fig. 5A). 

In addition, the impacts of different synthetic data sizes and numbers of iterations on 

performance were evaluated. As illustrated in Fig. 5B, there was an evident 

improvement in terms of the AUROC performance, particularly when the synthetic 

data initially participated compared to the training without data synthesis (P < 0.001). 

A one-fold synthetic dataset means adding the same size of synthetic samples as the 

labeled cell lines for a given drug. Adding one-fold synthetic samples for one-round, 

two-round or three-round iterative training resulted in average AUROC increases of 

19.65%, 21.78% or 14.17%, respectively. The best performance was achieved by 

conducting at least two iterations on single-fold or double-fold synthetic samples or 

just one iteration on triple-fold synthetic samples (Fig. 5B). These results indicate 

that, compared to the performance gained from different regularization strategies, the 

application of synthetic data has a more pronounced impact on the model's 

performance, which notably enhances the predictive capabilities. 

 

3.6 Estimated atlas of drug responses for human breast cancer 

Large-scale measurements of drug responses in human patients are extremely 

difficult. With the effective prediction method DiSyn, we can estimate drug response 

for any patient with expression profiles. The data of 1,089 breast cancer patients in the 

TCGA dataset were used as an example to generate an estimated response atlas for 16 

drugs. The predictive response values were ranked for each drug, and the samples 

with the top 5% or bottom 5% of the predictive values were regarded as responders or 

nonresponders, respectively. A total of 46.8% of patients responded to at least one 

drug. Different drugs are effective for distinct patients, with some overlap, which 

further demonstrates the importance of personalized treatment (Fig. 6A). The top 3 

drugs with the highest proportions of responders among patients with breast cancer 

(BCRs) were 5-FU, Docetaxel and Doxorubicin. All of these drugs are FDA-approved 

for breast cancer, indicating that the prediction of DiSyn is reliable. 

To determine the association between the predicted drug response and gene 
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expression, 5-FU was used for further analysis. We identified 385 differentially 

expressed genes (DEGs) (adjusted P value < 0.1) between responsive and 

nonresponsive patients. These genes could be used to divide breast cancer patients 

into two groups with different responses to 5-FU (Fig. 6B). DEGs were significantly 

enriched in pathways of interest, such as focal adhesion and epithelial cell 

differentiation, and significantly overlapped with genes whose expression was 

upregulated when epidermal growth factor receptor (EGFR), transforming growth 

factor beta (TGFB) or rapidly accelerated fibrosarcoma (RAF) was overexpressed in 

epithelial cell lines of breast cancer (adjusted P value < 0.0001). Compared with 

responders, nonresponders had stronger EGFR pathway activity and greater EGFR 

gene expression (Figs. 6C and D, P < 0.0001). This led to the hypothesis that 

inhibiting the EGFR pathway could improve the therapeutic effects of 5-FU in these 

original nonresponders. Similar results and hypotheses have been reported in a 

previous experimental study. EGFR is significantly elevated in 5-FU-resistant tumors 

compared with normal tissues and 5-FU-sensitive tumors, and targeting EGFR 

sensitizes 5-FU-resistant cancer cells [47]. This consistent example demonstrated that 

DiSyn could be used to identify drug sensitivity-related markers and provide clues for 

potential combination therapy. 

To evaluate the therapeutic effects of the drug combination in breast cancer, we 

selected the EGFR high-expressing MDA-MB-231 cell line for in vitro viability 

assays (see “Methods” section for details). The results demonstrated that the 

combination of Gefitinib (an EGFR inhibitor) and 5-FU inhibited cell viability with 

greater efficacy compared to either agent alone (Fig. 6E), suggesting the effectiveness 

of our methods in identifying potential drug combinations. Notably, MDA-MB-231 is 

also a typical triple-negative breast cancer (TNBC) cell line, which is a subtype with 

the worst prognosis and limited treatment options in breast cancer cases [48]. These 

findings provide a promising strategy for TNBC therapy, warranting further studies to 

fully explore its potential. 

 

4. Discussion 

In this study, we developed a new deep learning method, DiSyn, to enhance the 

generalization performance of drug response prediction beyond cell line datasets. The 

accuracy and robustness of DiSyn were demonstrated by a comprehensive benchmark 
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using 3 test datasets against 18 baseline models. Additionally, we estimated the 

therapeutic effects of 16 drugs for more than 1,000 human breast tumors, which is 

valuable for better understanding the heterogeneity of cancer treatment. 

The most important improvement of DiSyn is training using a mix of real and 

synthetic data. DiSyn disentangled drug-specific and unspecific features from the 

input data. Then, utilizing the drug-unspecific representations from the target domain, 

the model could generate synthetic data, which provide examples and variations that 

might not be explicitly represented in the original dataset, to be further involved in 

model training. Inspired by Cao et al. [22], our model alternates between 

disentanglement and drug-specific training stages, progressively enhancing the 

predictive performance throughout these iterations. The initial motivation behind this 

iterative process is that an effective feature extractor can generate more accurate 

synthetic data, and accurate synthetic data can further promote extractor training. The 

ablation study demonstrated that DiSyn could not only transfer knowledge within the 

decoupled subspace but also leverage synthetic data to further promote transfer 

capability. Through the innovative iterative approach, DiSyn achieved a significant 

performance improvement compared to 18 baseline methods. 

Previously, we and others have explored the effects of different omics data on model 

performance, such as copy number variations, genomic mutations and gene 

expression [8, 9, 49]. The expression profiles usually exhibit similar or better 

performance than other omics; therefore, we did not discuss other omics methods in 

this study. Like most deep learning methods [50], DiSyn training relies on 

hyperparameter optimization. Using the AUROC as the optimal criterion results in a 

high AUROC, as expected, but does not guarantee the performance of other metrics. It 

is recommended that algorithm developers select the most relevant evaluation 

indicator to set the stopping criterion for optimization. Additionally, the complex 

architecture of DiSyn limits its interpretability. Although we used t-SNE to visualize 

latent features and used breast cancer as an example to identify candidate biomarkers 

of 5-FU, these results are preliminary and require more rigorous investigations. 

In conclusion, DiSyn offers a powerful and reliable framework for drug response 

prediction from preclinical cancer models to clinical applications. Furthermore, the 

application of DiSyn to large patient cohorts may reveal new biomarkers related to 

drug responses. 
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5. Conclusion 

Our study presents DiSyn, a deep learning model that achieves remarkable 

improvements in drug response prediction for cancer. By integrating disentangled 

feature learning and data synthesis, DiSyn outperforms existing methods, 

demonstrating its robustness and potential for clinical application. The model's 

success in predicting drug responses across diverse datasets underscores its reliability 

and the promise of artificial intelligence in advancing personalized medicine. 
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Figure Captions 

Fig. 1. Architecture illustration of disentangled synthesis transfer network (DiSyn). 

(A) Illustration of DiSyn's workflow. Drug response-related features are separated 

from the input and then synthetic samples are utilized to help improving prediction 

accuracy in label-lacked target domains. These two processes mutually iterate in the 

subsequent training. (B) Architecture of DiSyn. The model comprises drug-specific 

encoder 𝑬𝑑𝑟𝑢𝑔−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 sharing across domains, drug unspecific encoder on both 

source domain 𝑬𝑑𝑟𝑢𝑔−𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝒔  and target domain 𝑬𝑑𝑟𝑢𝑔−𝑢𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝒕  respectively, 

one decoder, and two adversarial discriminators. The training process consists of 

pretraining, drug-specific training, and disentanglement stages. For more details, 

please refer to the DiSyn Architecture section. (C) Illustration of the data synthesis 

process. We specifically showcased the data synthesis process during the model 

training. The drug-specific features from source samples and the drug-unspecific 

features from target samples are used for recombination to generate novel synthetic 

samples, and the label of the synthetic samples was derived from the source samples. 

Fig. 2. Visualization of the original profiles and latent features encoded from 

disentangled synthesis transfer network (DiSyn). (A) T-distributed stochastic neighbor 

embedding (t-SNE) results generated from the original gene expression features. 

GDSC: Genomics of Drug Sensitivity in Cancer, TCGA: The Cancer Genome Atlas. 

(B) Latent features encoded by the pretrained encoder. (C) Latent features encoded by 

the paclitaxel-specific encoder without synthetic samples. (D) Latent features encoded 

by unspecific encoders without synthetic samples. (E) Latent features encoded by the 

paclitaxel-specific encoder with synthetic samples. (F) Latent features encoded by 

unspecific encoders with synthetic samples.  

Fig. 3. Performance comparison of disentangled synthesis transfer network (DiSyn) 

and baseline models on The Cancer Genome Atlas (TCGA) patient data. (A) Area 

under the receiver operating characteristic curve (AUROC) score for 16 drugs of 

DiSyn and baseline models. (B) area under the precision‒recall curve (AUPRC). (C) 

Accuracy (ACC). (D) F1 score. (E) Average precision score (APS). (F) Heatmap 

showing the average rank of 16 drugs (Tables S3-7). CODE-AE: context-aware 

deconfounding autoencoder [16], AITL: Adversarial inductive transfer learning [14], 
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TRANSACT: Tumor response assessment by nonlinear subspace alignment of cell 

lines and tumors [13], PRECISE: Patient response estimation corrected by 

interpolation of subspace embeddings [11], AdaBoost: Adaptive Boosting [45], 

TUGDA: Task uncertainty guided domain adaptation [15], SVM: support vector 

machine [43], PaccMann: prediction of anticancer compound sensitivity with 

multimodal attention-based neural networks [5], TGSA: twin graph neural networks 

for drug response prediction and a similarity augmentation module [6], TGSA_EXP: 

TGSA variants with only gene expression input, TGSA_CNV: TGSA variants with 

only gene copy number variation input, TGSA_MUT: TGSA variants with only gene 

mutation input, CRDNN: clinical response prediction using deep neural network [3], 

VAEN: variational autoencoder with elastic net strategy [2], MOLI: multi-omics late 

integration method based on deep neural networks [4]. 

Fig. 4. Performance comparison of DiSyn and baseline models on PDX mouse data. 

(A-H) are the area under the receiver operating characteristic curve (AUROC) results 

for Tamoxifen, Ruxolitinib, LGK974, Trametinib, Erlotinib, Paclitaxel, 5-

Fluorouracil, and Gemcitabine. Eight representative baseline models were selected to 

reduce the computational time. The detailed results of the other evaluation metrics are 

presented in Table S8. CODE-AE: context-aware deconfounding autoencoder [16], 

TRANSACT: Tumor response assessment by nonlinear subspace alignment of cell 

lines and tumors [13], PRECISE: Patient response estimation corrected by 

interpolation of subspace embeddings [11], AdaBoost: Adaptive Boosting [45], 

TUGDA: Task uncertainty guided domain adaptation [15], SVM: support vector 

machine [43]. 

Fig. 5. Ablation studies were conducted on 16 drugs from TCGA dataset to assess the 

effects of various model components and the inclusion of synthetic data on prediction 

performance. Specifically, we analyzed how these factors influenced the area under 

the receiver operating characteristic curve (AUROC) values. In each figure, a single 

point represents the 5-fold-average AUROC for one drug. (A) Distribution of AUROC 

values under different regularization methods: BASE (base models without domain 
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similarity loss), MMD (maximum mean discrepancy regularization), and ADV 

(adversarial regularization). (B) Distribution of AUROC values when varying the 

folds of synthetic data and the number of iterations during training. Asterisks indicate 

the level of statistical significance according to the Wilcoxon test: *P < 0.05, **P < 

0.01. 

Fig. 6. Predicted drug responses of breast cancer patients. (A) Number of patients 

predicted to be responsive to each drug, with a pie chart representing the proportion of 

patients responsive to different numbers of drugs. (B) Expression of differentially 

expressed genes (DEGs) between breast cancer patients who were responsive (R) or 

non-responsive (NR) to 5-Fluorouracil (5-FU). p-values were calculated using the 

Wilcoxon test and adjusted for multiple tests. Each row represents a gene, and each 

column represents a patient. (C) Enrichment plot of DEGs in the epidermal growth 

factor receptor (EGFR) pathway, with the EGFR-related gene set obtained from the 

"EGFR_UP.V1_UP" term in the MSigDB database. The enrichment score was 

calculated using Gene Set Enrichment Analysis (GSEA). (D) Boxplot comparing 

EGFR expression levels between 5-FU responders and non-responders. Asterisks 

indicate the level of statistical significance according to the Wilcoxon test: **P < 

0.01. (E) Cell Counting Kit-8 (CCK-8) assays of breast cells treated with 5-FU and 

Gefitinib individually or together. The abscissa is the different treatment time, and the 

ordinate represents the cell viability after treatment. Two-way ANOVA was used to 

analyze the data (****P < 0.0001). The data are shown as mean ± SD. CK: Control.            
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Highlights 

• A novel disentangled synthesis transfer network (DiSyn) for in-vivo drug response 

prediction. 

• Achieving state-of-the-art performance in drug response prediction by effectively 

generalizing preclinical data to patients. 

• The application on patients reveals its potential in identifying biomarkers and 

optimizing therapeutic strategies. 
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