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stages of proliferating human hepatocytes

Bihan Shen,1,3,5 Chen Ma,2,3,5 Lili Tang,4 Zhitao Wu,2,4 Zhaoliang Peng,2,3 Guoyu Pan,2,3,4,* and Hong Li1,3,6,*
SUMMARY

Cell therapy using proliferating human hepatocytes (ProliHHs) is an effective treatment approach for
advanced liver diseases. However, rapid and accurate identification of high-quality ProliHHs from
different donors is challenging due to individual heterogeneity. Here, we developed a machine learning
framework to integrate single-cell Raman spectroscopy frommultiple donors and identify different stages
of ProliHHs. A repository of more than 14,000 Raman spectra, consisting of primary human hepatocytes
(PHHs) and different passages of ProliHHs from six donors, was generated. Using a sliding window algo-
rithm, potential biomarkers distinguishing the different cell stages were identified through differential
analysis. Leveraging machine learning models, accurate classification of cell stages was achieved in
both within-donor and cross-donor prediction tasks. Furthermore, the study assessed the relationship be-
tween donor and cell numbers and its impact on prediction accuracy, facilitating improved quality control
design. A similar workflow can also be extended to encompass other cell types.

INTRODUCTION

Liver disease is a significant global health issue that leads to a serious economic burden and 2 million deaths annually worldwide.1,2

Orthotopic liver transplantation is the only curative treatment for advanced liver failure, but the shortage of suitable donors and the

long-term use of immunosuppressive drugs have impeded its clinical utility.3 Hepatocyte transplantation provides an alternative strat-

egy for treating some liver diseases with minimal invasiveness.4,5 For example, acute liver failure, fulminant hepatitis, and liver-based

metabolic disorders have been successfully treated by hepatocyte transplantation in preclinical and clinical research.6–13 However, there

are major bottlenecks for hepatocyte transplantation: limited sources, difficult expansion and maintenance, and poor quality of primary

human hepatocytes (PHHs).

Recent studies have developed alternative sources of hepatocytes, including hepatic progenitor cells, directly differentiated embryonic

stem cells (ESCs), induced pluripotent stem cells (iPSCs), and transdifferentiated adult cells.14–16 Zhang et al. reported that proliferating hu-

man hepatocytes (ProliHHs) could proliferate continually for more than two months, resulting in a 10,000-fold expansion in vitro.17 ProliHHs

exhibit both hepatocyte-like and progenitor-like features and efficiently repopulate the damaged liver in FRG mice without tumor forma-

tion.18 Harvesting high-quality ProliHHs via cell transplantation is crucial. Traditional techniques such as RT-qPCR and western blotting are

time-consuming and require a large number of cells. While flow cytometry has the potential to accurately measure antigen quantities in in-

dividual cells, it requires specific labeling with antibodies or fluorescently labeled microbeads.19 A faster and easier-to-operate method is

needed to improve the quality control of ProliHHs.

Raman spectroscopy is a rapid, noninvasive, and label-free analytical technique.20 The regions of the Raman spectrum can represent the

states of carbohydrates, nucleic acids, proteins, lipids and other biomolecules.21 Therefore, Raman spectroscopy is gaining popularity for

the classification of biological samples, such as human pluripotent stem cell-derived neurons,22 pathogens,23–26 tumors,27–31 and viruses.32,33

In our previous investigation, we successfully performed Raman profiling of PHHs and different passages of ProliHHs and found that

Raman spectroscopy could track the biochemical changes occurring during the dedifferentiation process from PHHs to ProliHHs.34 Consid-

ering the heterogeneity of individuals and cells, we expanded the number of human donors from one to six, expanded more passages of

ProliHHs, collected Raman spectra of a larger number of cells, and conducted this research to construct a more accurate and robust machine

learning model for classifying PHHs and ProliHHs.
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Figure 1. Raman spectra of human primary hepatocytes and proliferating hepatocytes

(A) Schematic illustration of the study, including Raman spectra measurements, data preprocessing, and classification model construction.

(B) The average Raman spectra acquired from PHH, P1, P4, and P9 from six different donors.

(C and D) Raman spectra were subjected to t-SNE visualization, where the colors represent different cell stages (C) and donor origins (D).

(E and F) Raman band intensity comparisons between different cell stages among six donors were quantified for various biomolecular components, including

1,208 cm�1 (hydroxyproline) (E) and 1,440 cm�1 (lipids) (F). Student’s t test with Bonferroni correction was used. Asterisks indicate the level of statistical

significance: *p < 0.05, **p < 0.01, n.s., not significant.

ll
OPEN ACCESS

2 iScience 27, 109500, April 19, 2024

iScience
Article



300 600 900 1200 1500 1800

Wavenumber (cm
−1

)

In
te

ns
ity

 (a
.u

.)

Group
PHH
P1
P4
P9

PHH vs P1
PHH vs P4
PHH vs P9

P1 vs P4
P1 vs P9
P4 vs P9

005 416 2011025-01 1922211-01 2016789-01 393B
0.00

0.01

0.02

0.03

0.04

0.05
ns

ns

ns

ns

ns
ns

** **
** **

**
**

**
**

** **
**

**
**

**

**

**
**

**

**
**

****
**

**
****

**
**

*

*

Integral of Raman band at 480 cm
−1

(Glycogen)

005 416 2011025-01 1922211-01 2016789-01 393B

0.005

0.010

0.015

0.020

0.025

0.030

ns

ns ns ns**
**

**
**

**

**
**

****
**

Integral of Raman band at 933 cm
−1

(ν(C-C) skeletal of collagen backbone)

**
**

**
**

**
**

**
**

**
**

**
**
**

**
**

ns
** **

**
**

**
**

Glycogen
480

Tyrosine
831

Polysaccharide
840-860

Collagen
933

Phenylalanine
1003

Amide II,
Typical

phosopholipids
1080

C-H in-plate
bending mode

of tyrosine
1172

Hydroxyproline,
tyrosine

1208

Collagen,
α-helix,

tryptophan
1265

Lipids
1300

Amide III
1337

Lipids
1440

Amide I
1660

Carbonyl 
feature of

lipid spectra
1744

0

2

4

6

1

3

5

300 600 900 1200 1500 1800

Wavenumber (cm
−1

)

In
te

ns
ity

 (a
.u

.)

Group
PHH
P1
P4
P9

PHH vs P1
PHH vs P4
PHH vs P9

P1 vs P4
P1 vs P9
P4 vs P9

005 416 2011025-01 1922211-01 2016789-01 393B
0.00

0.01

0.02

0.03

0.04

0.05
ns

ns

ns

ns

ns
ns

** **
** **

**
**

**
**

** **
**

**
**

**

**

**
**

**

**
**

****
**

**
****

**
**

*

*

Integral of Raman band at 480 cm
−1

(Glycogen)

005 416 2011025-01 1922211-01 2016789-01 393B

0.005

0.010

0.015

0.020

0.025

0.030

ns

ns ns ns**
**

**
**

**

**
**

****
**

Integral of Raman band at 933 cm
−1

(ν(C-C) skeletal of collagen backbone)

**
**

**
**

**
**

**
**

**
**

**
**
**

**
**

ns
** **

**
**

**
**

Glycogen
480

TyrosineTT
831

Polysaccharide
840-860

Collagen
933

Phenylalanine
1003

Amide II,
TypicalTT

phosopholipids
1080

C-H in-plate
bending modebendin odebendin debendin odbendin ode

of tyrosineof tyrosineof tyrosineof tyrosineof tyrosine
1172

Hydroxyproline,
tyrosine

1208

Collagen,
α-helix,

tryptophan
1265

Lipids
1300

Amide IIIA
1337

Lipids
1440

Amide I
1660

Carbonyl 
feature of

lipid spectralii
1744

0

2

4

6

1

3

5

A

B

C

D

ll
OPEN ACCESS

iScience 27, 109500, April 19, 2024 3

iScience
Article



Figure 2. Differentially changed Raman peaks between primary and proliferating hepatocytes

(A) Average Raman spectra acquired from six donors, representing PHH, P1, P4, and P9. The spectra are annotated with Raman bands that are indicative of cell

stage differences.

(B) Heatmap plots of the aggregated results of differentially changed peaks of any two cell stages, where the color indicates the number of donors that yielded a

significant p value < 0.05 and an absolute effect size larger than 0.2.

(C and D) Raman band intensity comparisons between different cell stages among six donors were quantified for various biomolecular components, including

480 cm�1 (glycogen) (C) and 933 cm�1 (n(C-C) skeletal collagen backbone) (D). Student’s t test with Bonferroni correction was used. Asterisks indicate the level of

statistical significance: *p < 0.05, ** p < 0.01, n.s., not significant.
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In this study, we produced a large-scale repository of Raman spectra covering more than 14,000 PHHs and ProliHHs from six donors. Po-

tential biomarkers of PHHs and ProliHHs were identified by differential analysis using a sliding window algorithm. Machine learning models

were built to distinguish different cell stages in within-donor and cross-donor prediction tasks. Moreover, we estimated the relationship be-

tween the number of donors and cells and the prediction accuracy for better experimental design.

RESULTS

Raman profiling of the ProliHHs

To construct a workflow for determining whether PHHs are transformed into ProliHHs during cell culture, our study included three steps:

Raman spectral measurements, data preprocessing, and classification model construction (Figure 1A). PHHs from six donors (Lot: 416,

393B, 005, 2011025-01, 2016789-01, and 1922211-01) were used to induce ProliHHs. PHHs, ProliHHs at passage 1 (P1), passage 4 (P4), and

passage 9 (P9) were collected to derive Raman spectra. The fingerprint region ranging from 320 cm�1 to 1,800 cm�1 consisting of 2,214 Raman

bands was used (Figure 1B), which covered the majority of the vibrational modes of biomolecules. At least 600 spectra were examined for

PHH, P1, P4, and P9. After quality control, more than 14,000 spectra were obtained (Table 1). Further visualization of the Raman spectra

by t-distributed stochastic neighbor embedding (t-SNE) is shown in Figures 1C and 1D. In terms of cell stage, PHH appeared to have greater

homogeneity and discrepancy than other stages (Figure 1C). Moreover, the differences among donors were minimal (Figure 1D). This finding

suggested that Raman spectra could distinguish different cell stages, especially PHHs from ProliHHs.

Our previous study of donor 005 confirmed that the Raman spectra change at 1,206 cm�1 (hydroxyproline) and 1,440 cm�1 (lipids) during

the transition from PHH to ProliHHs. Here, we also assessed the aforementioned changes in other donors (Figures 1E and 1F). The intensity of

the 1,206 cm�1 hydroxyproline band significantly increased from PHH to P9 (Figure 1E). The Raman band intensity of lipids at 1,440 cm�1

decreased significantly during the progression of ProliHHs proliferation (Figure 1F). This indicates that the differentially changed peaks

are conserved among donors.

Identification of potential biomarkers

To automatically detect differentially changed peaks across cell stages, Raman spectra were processed by sliding windows with sum pooling,

and spectra of any two cell stageswere compared by Student’s t test with Bonferroni correction. The aggregated results fromdifferent donors

are shown in Figure 2B. After the assignment of the peaks, several differentially changed Raman bands with the corresponding biomolecules

were identified (Figure 2A), including those at 480 cm�1 (glycogen), 831 cm�1 (tyrosine), 840–860 cm�1 (polysaccharide), 933 cm�1 (v(C-C)

skeletal of collagen backbone), 1,003 cm�1 (phenylalanine), 1,080 cm�1 (amide II, typical phospholipids), 1,172 cm�1 (C–H in plane bending

mode of tyrosine), 1,206 cm�1 (hydroxyproline), 1,265 cm�1 (a-helix, collagen, tryptophan), 1,300 cm�1 (lipids), 1,337 cm�1 (amide III),

1,440 cm�1 (CH2 and CH3 formation vibrations of lipids), 1,660 cm�1 (amide I of proteins), and 1,744 cm�1 (carbonyl feature of lipid spectra).

Hepatocytes maintain glucose homeostasis through glycogen synthase and degradation. In particular, the integral of the peak at 480 cm�1

decreased from P1 to P9, which implied that glycogen synthase was downregulated during cell dedifferentiation (Figure 2C). The band at

933 cm�1 increased significantly from PHH to P9 (Figure 2D).

Within-donor classification using machine learning models

According to t-SNE plots, PHHs displayed greater homogeneity and discrepancy than other stages. To verify this phenomenon, the centroid

distancewas used to quantify the intra- and inter-stage heterogeneity. As shown in Figure 3A, a smaller centroid distancewas observedwithin
Table 1. Summary of Raman spectra of PHHs and different stages of ProliHHs collected from six human donors

Donor PHH P1 P4 P9 Total

005 607 619 604 604 2434

2011025-01 508 609 608 604 2329

2016789-01 522 615 603 615 2355

1922211-01 503 601 603 594 2301

416 540 614 609 605 2368

393B 528 626 850 607 2611

4 iScience 27, 109500, April 19, 2024
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Figure 3. Within-donor classification between primary and proliferating hepatocytes

(A and B) Intra- (A) and inter-stage (B) heterogeneity quantified using centroid distance. Intra-stage refers to cells within the same cell group, e.g., PHHs. Inter-

stage refers to cells between two different cell groups, e.g., PHH and P1.

(C–F) Performance of classification models separately by cells from each donor: accuracy (C), precision (D), recall (E), and specificity (F). Error bars represent 95%

confidence intervals.
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the PHHs than within the other cell stages, indicating less intra-stage heterogeneity of the PHHs.Moreover, the heterogeneity between PHHs

and ProliHHs was significantly greater than the heterogeneity between different stages of ProliHHs (Figure 3B). These results indicate that the

growth rates and states of cells became more diverse during the transition from PHHs to ProliHHs.

Next, machine learning models were constructed to classify different cell stages derived from the same donor. Since this is a multi-

class task, one-vs-rest (OvR) and one-vs-one (OvO) strategies with different base models, i.e., support vector machine (SVM), , random

forest and neural network, were applied and evaluated using nested cross-validation with 10 repetitions.35 The performance of OvO was

greater than that of OvR regardless of the base model, indicating that OvO could better capture subtle differences among cell stages

(Table S1). The SVM with OvO strategy achieved the best performance and was chosen for subsequent analysis. Figures 3C–3F shows

the performance of the OvO SVM models for each donor. The overall accuracy ranged from 0.89 to 0.93 among the models of different

donors. The micro-average and macro-average of multiple classes for each evaluation metric were nearly the same since the number of

cells in multiple datasets was roughly balanced. The macro-precision and micro-precision ranged from 0.90 to 0.93, the macro-recall and

micro-recall ranged from 0.90 to 0.93, and the macro-specificity and micro-specificity ranged from 0.96 to 0.98. Notably, performance

fluctuated among different cell stages, with PHHs consistently achieving superior precision, recall, and sensitivity compared to other cell

stages.
Cross-donor classification using machine learning models

A practical application scenario in cell culture is using Raman spectroscopy to determine cell stages for a new donor by classification

models built from previously collected donors. Cross-donor classification is more challenging than within-donor classification, as the

model should not only distinguish different cell stages but also diminish the batch effect and individual heterogeneity of donors. Dif-

ferences among different donors were also quantified by centroid distance for different cell stages, and we found that P9 showed

greater cross-donor heterogeneity (Figure 4A). As the cell culture time increases, the growth rate of cells may become more inconsis-

tent, and cells collected on the same day may be a mixture of different passages. Moreover, we used variation partitioning to examine

the contribution of cell stage and donor origin to the variance in the data (Figure 4B). Remarkably, cell stage accounted for 47.47% of

the total variance, while donor origin accounted for only 0.83%. This laid the foundation for cross-donor classification, as the difference

among cell stages outweighed donor origins. Therefore, we conducted cross-donor classification evaluations, in which one donor was

used for independent testing and the rest were used for training. As shown in Figures 4C–4F, the accuracy of cross-donor classification

decreased, ranging from 0.73 to 0.78. The precision, recall and specificity also decreased slightly. In terms of cell stage, PHH tended to

achieve higher performance.

Cross-donor classification is usually more difficult than within-donor classification because of donor heterogeneity and the experimental

environment. As expected, the per-cell performance of the cross-donor classification models decreased. In practical scenarios, the actual

requirement is to infer the cell stage from randomly selected cells in the given plate using Raman spectra instead of accurately inferring

the stage of each cell. Figure 5A shows the fractions of correctly and incorrectly predicted cells for the given plate, and there was a clear

edge between them, indicating that our cross-donor classification model is applicable for determining PHH and ProliHHs passages for a

new donor. Therefore, we defined the per-plate accuracy, which is the percentage of correctly classified cells, using the cross-donor classi-

ficationmodel.Whenwe exhausted the dataset, where all cells from five donors were used to train amodel to predict all the cells from the left-

out donor, the average per-plate accuracy was 0.76. To guide clinical use, we employed systematic sample size planning (SSP) to estimate the

effects of sample size on the classification models. First, we examined the lower bound of the donor repository. The per-plate accuracy and

model stability increased as the number of donors involved increased (Figure 5B). Among all cell stages, three donors would be the best

choice for achieving optimal performance. Second, training cells were downsampled to estimate the minimum number of training cells. In

progressive sampling, the classification accuracy of all cell stages showed a clear tendency of improvement. When the data size approached

9,600 cells (i.e., approximately 480 cells from four cell stages derived from five donors), the learning curve reached asymptotic behavior, which

means that the performance of the model no longer increased significantly with more data (Figures 5F–5I). Finally, the minimum number of

test cells was determined. The learning curve started to converge at approximately 200 cells, suggesting that 200 cells would be enough to

gauge the overall stage of an unseen plate (Figure 5J–5M).
DISCUSSION

The present study provided a large-scale Raman spectra repository of different cell stages of ProliHHs obtained from six donors, resulting in a

total of more than 14,000 spectra. Machine learning models were utilized for two typical tasks for cell stage classification: within-donor and

cross-donor tasks.We found thatOvOmodels outperformedOvRmodels regardless of the basemodel, suggesting thatOvOwould bemore

suitable for discerning subtle variations among cell stages. In the within-donor task, we achieved high performance in per-cell prediction (the

accuracy, precision and recall were approximately 0.92, and the specificity was 0.97). In the cross-donor task, the data from the test donor were
6 iScience 27, 109500, April 19, 2024
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Figure 4. Cross-donor classification between primary and proliferating hepatocytes

(A) Cross-donor heterogeneity was quantified by centroid distance.

(B) The proportion of data variance explained by cell stage and donor origin.

(C–F) Performance of classification models trained on cells from five donors and tested on cells from another donor: accuracy (C), precision (D), recall (E), and

specificity (F). Error bars represent 95% confidence intervals.
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held out from training process. However, due to the shortage of donors, there have been no thorough investigations on cross-donor predic-

tion tasks in which we constructed models without any information from the test donor. It is more clinically relevant and more challenging

because models should achieve high accuracy in identifying cell stages as well as eliminating noise from donor sources, experimental envi-

ronments and so on. Although the performance on the cross-donor task decreased for per-cell prediction, the per-plate accuracy was still

high. In practical applications, our cross-donor model can determine whether most cells within the plate reach the desired stage and whether

cells can be harvested. Moreover, we provided the minimum number of training donors, training cells and testing cells for building classifi-

cation models, which would be helpful for better experimental design.

In conclusion, our study not only provided abundant Raman spectral resources for PHHs and ProliHHs but also offered a complete analysis

workflow, including data preprocessing, peak identification, within-donor classification, cross-donor classification and SSP. Our results will be

helpful for the quality control of ProliHHs using Raman spectroscopy. The analysis framework can also be extended to encompass other cell

types.
Limitations of the study

There are several challenges. Since only a few Raman peaks have been annotated to known biomolecules, differentially changed peaks and

classification models between PHHs and ProliHHs lack interpretability.36 The Raman signal is inherently weak, and experimental variability

may produce high noise; therefore, standardized experimental protocols, denoising methods and computational analyses are necessary

to maintain robust classification.20,21
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Figure 5. Sample size planning for clinical application

(A) The fractions of correctly and incorrectly predicted cells for the given plate.

(B–M) Three sample size planning strategies were performed to show the changes in per-plate accuracy with the number of training donors (B–E), training cells (F–

I), and testing cells (J–M). The minimal sample size was at the point where the rising curve was flat.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Primary human hepatocytes Corning 416; 393B

Primary human hepatocytes Novabiosis 005; 2011025-01; 2016789-01; 1922211-01

Chemicals, peptides, and recombinant proteins

N-acetyl-cysteine Sigma-Aldrich Cat#A9165-100G

Nicotinamide Solarbio Cat#N8070

Recombinant humanFGF10 Peprotech Cat#100-26

Recombinant human EGF Peprotech Cat#AF-100-15

Recombinant human HGF Peprotech Cat#100-39

Human [Leu15]-gastrin I Sigma-Aldrich Cat#G9145

A83-01 Tocris Bioscience Cat#2939

Rho kinase inhibitor Y-27632 Selleck Cat#s1049

Wnt3a protein Stemimmune LLC Cat#MST-WT3a-0010

Fetal bovine serum Ausbian Cat#VS500T

Software and algorithms

Scripts for analysis This paper https://github.com/LiHongCSBLab/

Raman_ProliHH

Python v3.8.3 Python Software Foundation https://www.python.org/

scipy v1.5.2 Virtanen et al.37 https://scipy.org/

sklearn v0.24.2 Pedregosa et al.38 https://scikit-learn.org

R v4.0.2 R Foundation for Statistical Computing https://www.R-project.org/

Vegan R package v 2.6 Borcard et al.39 https://cran.r-project.org/web/packages/

vegan/index.html

Caret R package v6.0.88 Kuhn40 https://cran.r-project.org/web/packages/

caret/index.html

Baseline R package v1.3.1 Liland et al.41 https://cran.r-project.org/web/packages/

baseline/index.html
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Further information and requests for resources and reagents should be directed to and will be fulfilled by lead contact, Hong Li (lihong01@

sinh.ac.cn).
Materials availability

No new reagents were generated from this paper.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.
� All original code has been deposited at https://github.com/LiHongCSBLab/Raman_ProliHH and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
12 iScience 27, 109500, April 19, 2024

mailto:lihong01@sinh.ac.cn
mailto:lihong01@sinh.ac.cn
https://github.com/LiHongCSBLab/Raman_ProliHH
https://github.com/LiHongCSBLab/Raman_ProliHH
https://github.com/LiHongCSBLab/Raman_ProliHH
https://www.python.org/
https://scipy.org/
https://scikit-learn.org
https://www.R-project.org/
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/baseline/index.html
https://cran.r-project.org/web/packages/baseline/index.html


ll
OPEN ACCESS

iScience
Article
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Primary human hepatocytes (PHHs) were purchased from Corning (Lot: 416 and 393B) and Novabiosis (Lot: 005, 2011025-01, 2016789-01, and

1922211-01). PHHs were cultured in OptiCulture Hepatocyte Media (Novabiosis).

Proliferating human hepatocytes (ProliHHs) were induced according to previously reported methods.17,34 Briefly, to generate ProliHHs at

passage 1 (P1), PHHs were treated with HM for 7 days under hypoxic cell culture conditions (2% O2).

PHHs, ProliHHs P1, P4, and P9 were seeded on 8-well Chamber Raman ScatteringMicroslides for 24 h. The cells were washed with PBS and

then fixed in 4% paraformaldehyde for 15 min. To collect the Raman spectra, the cells were washed with sterile water and evaporated

naturally.
METHOD DETAILS

Raman Microspectroscopy

Raman spectroscopy was performed using a WITec alpha 300 R Raman Imaging Microscope as described previously.34 In brief, the spectra

were collected with an excitation wavelength of 532 nm and 100 3 air objection (N.A. 0.9). To increase the signal-to-noise ratio of the

spectra, a 1800 lines/mm grating was used with a 10 s integration time and 9 mW laser power. The fingerprint region of the Raman spectra

(from 300 to 1800 cm-1) was measured. A single cell was randomly subjected to 10 Raman spectra detections. At least 60 cells per donor/

batch were collected. All spectra underwent normalization procedures, including cosmic ray subtraction, baseline correction,41 and area

normalization.34
Peak identification

To identify differentially changedpeaks among cell stages, Raman spectra were processed by a slidingwindowwith sumpooling. Thewindow

size was 20 points, and the stride was 5 points. The differentially changed peaks were reportedwith Student’s t-test with Bonferroni correction

p value < 0.05 and effect size > 0.2.
tSNE and data heterogeneity

To measure the variance among different cells, the centroid distance was calculated. Due to the curse of dimensionality, t-SNE was used to

project Raman spectral features in two-dimensional space for distance calculations.

Centroid distance =
1

n

Xn

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xÞ2 + ðyi � yÞ2

q
;

where (xi;yi) is the coordinate of the t-SNE-embedded Raman spectrumof sample i, and (x;y) is the coordinate of the centroid. The intra-stage

heterogeneity is defined as intra-centroid distance of cells from the same stage, which is expressed as 1
ns

Pns
i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xsÞ2 + ðyi � ysÞ2

q
,

where ns is the number of cells in the given stage, and (xs;ys) is calculated as ( 1ns
Pns

i = 1xi;
1
ns

Pns
i = 1yi ). Inter-stage heterogeneity is measured

by intra-centroid distance of cells from different stages, which is calculated as 1
nsA + nsB

ðPnsA
i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xSB Þ2 + ðyi � ySB Þ2

q
+

PnsB
j = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xSA Þ2 + ðyj � ySA Þ2

q
Þ, where nsA and nsB represent the number of cells in stages A and B, respectively. (xSA ; ySA ) and (xSB ; ySB )

are the centroids of cells within stages A and B, respectively. Cross-donor heterogeneity is defined as the inter-centroid distance of cells

from the same stage but from different donors, which is expressed as 1
n

PD
k

P
i;Dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xDk

Þ2 + ðyi � yDk
Þ2

q
, where n is the number of summa-

tion items, D = fDkg ðk = 1;2;.Þ, and (xDk
;yDk

) is the centroid of cells from donor k.37

To illustrate the portion of dataset variance explained by donors and cell stages, variation partitioning was conducted using the ‘varpart()‘

function from the ‘vegan‘ R package.39 Donors and cell stages served as explanatory variables, while the intra-centroid distances of the whole

dataset served as response variables.
Machine learning classification models

Identification of the developmental stage of ProliHHs is a multiclass classification task. A support vector machine (SVM) aims at finding a hy-

perplane to separate the positive and negative samples in a high-dimensional space. Since SVMs are designed for binary-class tasks, two

typical strategies are usually used to split a multiclass task into multiple binary-class tasks: one-vs-rest (OvR) and one-vs-one (OvO). OvR re-

quires one model to be trained for each class, which results in N models built for N classes. OvO involves one model to be created for each

pair of classes, resulting inNðN � 1Þ=2models forN classes. Finally, the class label is assigned the highest prediction score or the most votes

among the models from OvR or OvO, respectively. SVM models were implemented by the ‘‘caret’’ package in R 4.0.2.40

For each class, the performances were measured by precision, recall and specificity. Macro- and micro-averages were adopted for repre-

senting performance across all classes. The overall accuracy rate was also evaluated.
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Accuracy =

PðTNi +TPiÞPðTNi +TPi + FNi + FPiÞ
Precisioni =
TPi

TPi + FPi
Recalli =
TPi

TPi + FNi
Specificityi =
TNi

TNi + FPi
Macro � precision =

P
Precisioni

N

Micro � precision =

P
TPiPðTPi + FPiÞ
Macro � recall =

P
Recalli
N

Micro � recall =

P
TPiPðTPi + FNiÞ
Macro � specificity =

P
Specificityi

N

Micro � specificity =

P
TNiPðTNi + FPiÞ

where TPi; FPi ;TNi and FNi are the number of true positives, false positives, true negatives and false negatives for class i, respectively, andN is

the number of classes. Metrics were implemented by scikit-learn in Python 3.8.38
Within-donor and cross-donor classification pipeline

In the within-donor classification task, nested cross-validation was undertaken to evaluate the model performance using Raman spectra of

cells from the given donor. The inner fourfold loop is responsible for tuning the hyperparameters (i.e., the cost and the smoothing parameter)

via a grid search, and the outer fivefold loop is responsible for model evaluation (Figure S1). The procedures were repeated 10 times for reli-

ability and fidelity. In the cross-donor classification task, data from the given donor were withheld as the independent test set. Fivefold cross-

validation was applied to find the best hyperparameter configuration using the remaining data from the donor repository. The performance

was finally assessed by data from the withheld donor (Figure S2).
Sample size planning (SSP)

SSP is meant to determine the minimal number of measurements needed for a statistical analysis.20,42 It is important for biological analysis of

Raman spectra to retain both efficiency and reliability. Learning curve (LC)-based methods are commonly used. LC measures the improve-

ment of models with increasing data size. In this study, there were three types of SSPs for cross-donor tasks with per-plate accuracy as the

model metric. First, the SSP of the number of training donors was used to determine how many donors were needed in the training set to

obtain good generalizability to an unseen donor. With k training donors andm donors in total, there werem3Ck
m� 1 possible combinations

to iterate. Second, a SSP of the number of training cells was carried out. The number of training cells sampled from five donors ranged from

approximately 120 to 10800. Each sampling process was repeated 10 times. Third, the number of test cells in the SSP was determined. The

number of test cells sampled from the test donor ranged from approximately 25 to 2300. Each sampling process was repeated 10 times.
QUANTIFICATION AND STATISTICAL ANALYSIS

Model performances are presented as the mean of each iteration, and error bars represent 95% confidence intervals. Asterisks indicate the

level of statistical significance: *p < 0.05, **p < 0.01, n.s., not significant.
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