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Abstract

Single-cell transcriptomics enables the identification of rare cell types and

the inference of state transitions, whereas spatially resolved transcriptomics

allows the quantification of cells and genes in the context of tissues. The

recent progress in these new technologies is improving our understanding of

the cell landscape and its roles in diseases. Here, we review key biological

insights into liver homeostasis, development, regeneration, chronic liver

disease, and cancer obtained from single-cell and spatially resolved

transcriptomics. We highlight recent progress in the liver cell atlas that

characterizes the comprehensive cellular composition; diversity and func-

tion; the spatial architecture such as liver zonation, cell communication, and

proximity; the cell identity conversion and cell-specific alterations that are

associated with liver pathology; and new therapeutic targets. We further

discuss outstanding challenges, advanced experimental technologies, and

computational methods that help to address these challenges.

OVERVIEW

The liver is one of the most important metabolic organs
in the body, which is highly organized, with the
operation of hepatic functions heavily relying on its
delicate architecture.[1] Liver disease is estimated to
affect billions of people globally,[2,3] which is recognized
in various forms, including chemical-induced liver
injury, NAFLD, liver cirrhosis, and liver cancer. The
pathogenesis of liver disease involves dramatic cell
state transitions, extensive cell–cell interactions, and

prominent histological changes that disturb the spatial
architecture of the organ,[4] leading to the demand to
decode the spatiotemporal programs of hepatic cells
during the course of liver disease.[1,4–6]

Single-cell RNA sequencing (scRNA-seq) and spa-
tially resolved transcriptomics are ideal approaches
to understand liver biology in the following scenarios
(Figure 1): (i) constructing the single-cell atlas of both
homeostatic and diseased livers that comprehensively
describes common, rare, and disease-associated
subpopulations[5,7–9]; (ii) deciphering the molecular
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dynamics along cell state transitions and discovering
the core regulatory factors driving the transitions[10–13];
(iii) characterizing the features of microenvironments
such as cell interactions and spatial proximity[5,14,15];
and (iv) identifying the potential biomarkers and therapy
targets for liver diseases.[12,16–18]

In this review, we first introduce the cutting-edge single-
cell sequencing and spatially resolved technologies and
then illustrate how these techniques address important
questions in cellular landscape, molecular dynamics, and
spatial architectures of the liver in the aspect of homeo-
stasis maintaining, liver development, liver regeneration,

and pathogenesis of liver diseases. The challenges and
possible solutions regarding experiments and computa-
tional analyses are summarized when applying these
technologies to liver research.

SINGLE-CELL AND SPATIALLY
RESOLVED TECHNOLOGIES

ScRNA-seq is able to profile whole transcriptome at
single-cell resolution.[19,20] It is widely used in liver
research.[5,7,10,14,21,22] To conduct scRNA-seq, the liver

F IGURE 1 The overview of the single-cell and spatially resolved transcriptomics in liver biology. Applying single-cell and spatially-resolved
technologies in liver research enables (i) the construction of liver single-cell atlas (the first panel), which allows to identify cell populations
composed the organ, investigate cellular heterogeneity, and delineate molecular signature of individual cell types; (ii) the deduction of cellular
transitions from pseudotemporal analysis (the second panel), which permits to depict gene expression dynamic along pseudotime and uncover
key regulatory factors underlying cellular state transition based on gene regulatory network; (iii) the characterization of tissue microenvironments
(the third panel) in the aspects of ligand-receptor mediated cell-cell communications, cellular neighborhoods identified from spatial proximity
analysis, and spatially varied gene expression patterns; and (iv) the identification of potential therapy targets (the last panel), which may be
informative for downstream in vitro and in vivo experiments. “*”, “**”, and “***” indicate the significant differences between different biological
conditions. These help decode the liver, facilitating the investigation of molecular mechanisms underlying pathogenesis of liver diseases.
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must undergo dissociation, single cell isolation, transcript
capture, and sequencing. There are diverse experimen-
tal platforms to perform scRNA-seq,[23] such as 10X
Chromium,[24] Smart-seq2,[25] and MARS-seq.[26] Since it
is superior in throughput,[27] 10X chromium is widely used
to establish the cellular landscapes of the liver under
different circumstances.[5,6,28,29] Smart-seq2 provides
deep sequencing coverage,[30] which captures more
genes per cell, allowing the identification of subtle differ-
ences in hepatic cells between different states.[18,22,31]

However, the following problems may be encountered
when applying scRNA-seq to liver samples: (i) scRNA-
seq requires enzyme-involved tissue disassociation that
can lead to loss of sensitive cells[20,32,33] and changes in
gene expression.[32,34,35] It has been reported that
scRNA-seq presents altered cell proportions,[5,33,35]

particularly hepatocytes, as they are highly sensitive to
cell death when disassociated.[20,29,35] Moreover, scRNA-
seq induces extra damage to hepatic cells.[33,34] In
addition, tissue disassociation may generate debris
when applied to injured livers and render low efficiency
of cell release from highly fibrotic specimens.[20] (ii) It is
hard to reflect the polyploidy nature of hepatocytes,[36]

which includes nuclear ploidy (diploid, tetraploid, octo-
ploid, and so on) as well as cellular ploidy (mononucleate
and binucleate).[29] Polyploidy hepatocytes tend to
have more transcripts,[36,37] but their gene expression
profiles remain largely similar to those of diploid
hepatocytes.[36–39] It is difficult to discriminate cells of
varied ploidy purely based on data analysis. In addition,
these polyploidy hepatocytes will confound doublet
detection, particularly the “homotypic” ones.[40]

To overcome the challenge posed by low viability of
hepatocytes, MacParland et al[29] developed a new cell
isolation approach without density gradient, column
purification, or flow cytometry, which successfully
reconstructed the cellular landscape of healthy human
liver. Besides that, recent practices suggest that single-
nuclei RNA sequencing (snRNA-seq) may be the key to
solve problem (i).[5,20,32,33] Instead of profiling intact
cells, snRNA-seq measures transcripts within nuclei,
which is compatible with fresh frozen (FF) samples and
those hard to dissociate.[20,41] It has been shown to
faithfully present the cellular proportions of hepatic
cells.[5,37] In addition, snRNA-seq data set of intact liver
samples showed less transcriptomic disruption com-
pared with those predisassociated ones.[34] Moreover, it
has been applied to comprehensively profile cellular
landscape of injured livers induced by either hepato-
toxic chemicals[34,42] or chronic liver diseases.[5,9] As for
problem (ii), unfortunately, there is not a good computa-
tional solution yet.[20,29] Fluorescence-activated cell
sorting may partially resolve the problem, which has
been applied to purify hepatocytes of different ploidies
according to genome contents ahead of single-cell
sequencing.[37,38]

Besides scRNA-seq and snRNA-seq, there are a
variety of other experimental methods to perform high-
throughput single-cell studies.[4,19,20] Single-cell assay
for transposase accessible chromatin sequencing
(ScATAC-seq) enables profiling of the open chromatin
landscape at single-cell resolution.[43] CITE-seq (short
for “Cellular Indexing of Transcriptomes and Epitopes
by sequencing”) is a sequencing-based method that
studies cells concurrently at transcriptomic and proteo-
mic levels.[44] It simultaneously profiles surface proteins
and transcriptome of single cells, making it very suitable
for phenotyping immune cell subpopulations.[5,45,46] For
specific cell type, scTCR-seq allows for full-length alpha
and beta chain sequence pairing and determines the
diversity, clonal expansion, and activation of T cells.[47]

Moreover, single-cell multi-omics studies through either
integrative analysis of different single-cell omics data[48]

or measuring multiple types of molecules from individual
cells, such as single-cell multiome assay for trans-
posase accessible chromatin and gene expression
assay,[49,50] facilitate the discovery of new biological
insights more comprehensively and systematically. All
of the aforementioned single-cell technologies have
been applied in liver research, greatly promoting the
development of the field.[5,8,10,17,46,51,52]

Despite the remarkable resolution, the aforementioned
single-cell technologies lose spatial context. Recent
advances in spatial omics serve as a complement and
pave the way for completely understanding the liver in
a spatial setting.[4,5,15,53,54] There are 2 categories
of spatially resolved transcriptomics[55]: imaging-based
technologies encompass in situ sequencing-based
approaches and in situ hybridization–based approaches,
such as MERFISH[56] and SeqFISH,[57,58] and sequenc-
ing-based technologies consist of laser capture
microdissection-based sequencing,[59,60] 10X Genomics
Visium Spatial Transcriptomics (10X Visium),[61,62] Seq-
Scope,[63] Stereo-seq,[64] and so on. These diverse
technologies are different in spatial resolution (dozens
of cells, cellular, and subcellular), gene coverage (several
to thousands genes or whole transcriptome), detectable
tissue size, cell throughput, and compatible sample
types.[65] 10X Visium is compatible of both formalin-fixed
and paraffin-embedded (FFPE) and FF samples.[61,66]

Within each capture area, 10X Visium is able to profile
whole transcriptome of ∼5000 spots (55 μm in diameter),
providing an average resolution of 1–10 cells per
spot.[61,66] NanoString GeoMx Digital Spatial Profiler
(DSP) is also suitable for FFPE and FF tissue
samples.[67] Unlike 10X Visium, DSP allows to profile
whole transcriptome of user-defined regions of interest
(covering 1–5000 cells) when ligated to next-generation
sequencing system.[67] In addition, when ligated to
nCounter system, DSP is capable of generating up to
96-plex spatial proteomics data.[67] The recently emerged
stereo-seq achieves subcellular resolution at a larger field
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of view from FF tissue slide based on DNA nanoball
technology.[64]

In addition, technologies for spatially resolved
proteomics, metabolomics, or multiomics have been
developed.[68–73] Multiplex immunohistochemistry ena-
bles the simultaneous detection of more than 7
proteins.[68] New strategies, such as imaging mass
cytometry,[69] multiplexed ion beam imaging,[70] and
CODEX,[71] enabling simultaneous analysis of dozens
of proteins, offer enough power to distinguish cell
types and investigate the spatial distributions of cells.
Matrix-assisted laser desorption ionization-mass spec-
trometry imaging and desorption electrospray ioniza-
tion mass spectrometry imaging are the most com-
monly used spatial metabolomics techniques.[72] The
former can consistently detect hundreds of metabolites
at a spatial resolution of <10 µm.[72] NanoString
CosMx Spatial Molecular Imager is a flexible high-
plex in situ analysis platform that can detect up to
1000-plex RNAs and 100-plex proteins from FFPE or
FF samples at cellular and subcellular resolution.[73]

Rapid development of experimental techniques has
been accompanied by the accumulation of data. To
bridge the gap between data and biological insights,
computational approaches are becoming increasingly
important. Basic suite for scRNA-seq data analysis
includes quality control, normalization, unsupervised
clustering, gene signature detection, cell type annotation,
and visualization with either TSNE or UMAP.[74,75]

Computational packages such as Seurat,[76] Scanpy,[77]

and RaceID3[78] are capable of the aforementioned
processing. More complex analyses, such as batch effect
correction, trajectory inference, pathway activity estima-
tion, cell–cell communication deduction, and the con-
struction of single-cell regulatory networks, have been
addressed by various bioinformatic tools and illustrated
thoroughly in previous benchmark works.[79–81]

Cell type/state annotation is the fundamental step in
analyzing scRNA-seq data but remains challenging in
the field.[82–84] Generally, dimensionality reduction and
clustering are performed to gain cell clusters, which are
subjected to automated and/or manual annotation to
determine their cell identities or states.[76,82] Automated
strategies rely either on curated marker gene data-
bases, gene expression correlation to reference data
sets, or label transferring through supervised
classification.[82] Thus, the results are heavily influenced
by the provided references. Computational tools ena-
bling such analysis include scmap,[85] SCINA,[86]

OnClass,[87] SingleCellNet,[88] scNym,[89] and others.
Unlike automated annotation, manual annotation
determines cell identities or states mainly relying
marker genes, which demands a strong biological
understanding.[84] Researchers may need to collect
well-recognized markers through searching literatures
and/or mining existing single-cell data sets for gene
signatures concerning the queried data set.[84] Both

strategies have been applied to liver single-cell
studies.[5,29,90] A 3-step workflow has been proposed
to perform high-quality annotation: first use automated
tools as they are comprehensive and convenient, and
then perform manual curation, which is more flexible
and reliable for novel or rare cell populations, and
finally, experimentally verify the annotation.[84] Notably,
annotating cell states, particularly intermediate states of
a cell gradient,[84] emerges another challenge as they
may not express unique markers.[91,92] However, it is
easy to define the end state of a gradient whose
signature genes would reversely help characterize the
intermediate states.[84]

Computational methods designed for spatial omics
are under development.[93–95] The core idea of these
methods is the use of gene expression profiles, spatial
distances, and histopathological features to character-
ize tissue spatial architectures. The common scenarios
(and existing tools) are as follows: (i) unsupervised
division of spatial domains (STAGATE,[96] SpaGCN,[97]

and BayesSpace[98]); (ii) trajectory construction in a
spatial context (stLearn[99] and SPATA2[100]); (iii) the
identification of spatially variable genes (SpatialDE[101]

and SPARK[102]), and (iv) the prediction of spatial gene
expression from hematoxylin and eosin staining (ST-
Net,[103] XFuse,[104] and HE2RNA[105]). Moreover, the
integration of scRNA-seq with spatially resolved tran-
scriptomics enables complementary analysis: the
decomposition of cell populations mixed in Visium spots
(SPOTlight[106] and cell2location[107]), the inference of
potential spatial origins of individual cells,[108] and
resolving cellular heterogeneity from a perspective of
spatial distribution.[5]

LIVER HOMEOSTASIS

Construction of a single-cell atlas of the
homeostatic liver

Two experimental strategies are applied to establish
the single-cell atlas of the liver. Unbiased sampling
enables the recapitulation of entire cell populations of the
liver.[7,29,35] Applying this strategy, the Tabula Sapiens,[109]

MacParland et al,[29] and Aizarani et al[7] have captured
~5000, 8400, and 10,000 cells from normal livers of
human donors, respectively. Presorting cells of interest
before sequencing provides a more focal perspective on
specific cell types, facilitating the discovery of novel
subpopulations.[18,45,110] For instance, focusing on CD45+

immune cells, Zhao et al[110] have constructed an immune
cell landscape containing more than 70,000 cells from
paired liver, spleen, and peripheral blood samples
belonging to 3 healthy human donors. In addition, the
single-cell transcriptomic atlas of normal mouse livers has
also been comprehensively characterized by the Tabula
Muris Consortium[111,112] and other studies.[5,113]
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There are 2 major categories of hepatic cells:
parenchymal cells (PCs) and nonparenchymal cells
(NPCs). PCs consist of hepatocytes and cholangiocytes
(ie, biliary epithelial cells), accounting for ∼80% of all
cells in the liver.[114,115] The rest are NPCs, which are
composed of immune cells, including T cells, B cells,
natural killer (NK) cells, neutrophils, dendritic cells
(DCs), monocytes, and macrophages, as well as
stromal cells, including endothelial cells (ECs) and
mesenchymal cells.

Efforts being made to comprehensively delineate the
cellular landscape of the livers greatly facilitate the
identification of robust cell markers and the discovery of
novel/rare cell populations.[5,7–9,11,29] The classical or
newly identified gene/protein markers for common
hepatic cells in mouse (Figure 2A) and human
(Supplemental Figure S1, http://links.lww.com/HEP/
F22) are summarized in Supplemental Table S1,
http://links.lww.com/HEP/F21. For example, based on
single-cell studies, a core gene signature specific to
liver-resident KCs, including CD5L,[5,7,29,116,118] VSIG4,
[5,7,29,116] CD163,[5,7,8,29,116] FOLR2,[5,7,8,29,116] MARCO,
[5,7,29,116] and SLC40A1[5,8,116,118] has recently been
proposed, which is conserved in not only human and
mouse but also in other 5 different species.[5,116]

Moreover, novel macrophage subpopulations have
been detected by scRNA-seq studies.[5,8,118] For exam-
ple, a macrophage subset termed lipid-associated
macrophage, which is characterized by the expression
of TREM2, CD9, and SPP1, has been recently identified
through scRNA-seq and CITE-seq.[5,45,119] The subpo-
pulation was found expanded in mice and humans with
obesity.[5,45,119] As for rare cell populations, a small
epithelial cell population positive for EPCAM and
showing an intermediate expression level of TACSTD2
(also known as TROP2) has been observed in adult
human livers.[7] In silico lineage reconstruction and
in vitro experiments both demonstrated that EPCAM+-
TROP2int epithelial cells were capable of generating
hepatocyte-biased and cholangiocyte-biased cells, sug-
gesting that they are liver progenitor cells.[7]

Liver zonation

The aforementioned cells are neatly packed into liver
lobules, the structural units of the liver (Figure 2B). On a
liver lobule, hepatocytes radiate outward from the
central vein to the portal triad, an anatomic structure
containing bile ducts, the portal vein, and the hepatic
artery.[1,120] Oxygen, nutrients, and hormones exhibit
gradient distribution along the portal-central axis,
resulting in nonuniformly expressed metabolic genes
across the lobule.[1,120–122] Generally, the liver lobule is
divided into 3 regions: the periportal area (zone 1),
the pericentral area (zone 3), and the middle area (zone
2) (Figure 2B). This is termed liver zonation. Previous

work has revealed a few zonation landmark genes
for hepatocytes.[120,123,124] However, to fully understand
liver zonation, a transcriptome-wide zonation landscape
of diverse hepatic cells is needed.

Advanced experimental techniques and computa-
tional approaches facilitate the deciphering of zonal
expression patterns of hepatic cells from scRNA-seq
data sets.[7,18,125–127] Combining scRNA-seq and single-
molecule fluorescence in situ hybridization (smFISH),
Halpern et al[127] expanded the zonation pattern to whole
transcriptome in mouse hepatocytes. They first divided
the porto-central axis into 9 layers according to smFISH
of 6 landmark genes (pericentral: Glul and Cyp2e1[124];
periportal: Ass1,[123] Asl,[123] Alb,[120] and Cyp2f2[124]),
which was then used to build a probabilistic algorithm to
infer the layer of hepatocytes assessed by scRNA-seq
and then estimated the zonal pattern of other genes.[127]

The zonal genes summarized by this pioneering work
offer the possibility to deduce lobular locations of
hepatocytes for subsequent studies.[5,29,125] For mouse
ECs, paired-cell RNA-seq has been developed to infer
their lobular coordinates according to the zonal layer of
physically adjacent hepatocytes.[125] Observing that
mouse hepatocytes and ECs exhibit continuous tran-
scriptome-wide zonation,[125,127] Aizarani et al[7] reasoned
that the zonal gene expression patterns of human
hepatocytes and LSECs would be reflected at their
major axis of variability when assessed by scRNA-seq.
Thus, they ordered human hepatocytes and LSECs by
the diffusion map and then deduced the zonal gene
pattern by modeling gene expressions against inferred
cell orders.[7] A similar idea was adopted to infer zonation
pattern of HSC.[18] Using independent component
analysis, Dobie et al[18] identified the component most
highly correlated with the experimentally validated HSC
periportal marker (Ngfr) and then regarded genes with
high loadings of that component as HSC zonation genes.

In addition, 10X Visium reflects zonation patterns more
intuitively.[5,6,128] The main procedures to deduce zonated
expression patterns from Visium data sets include (i)
labeling the positions of veins according to histological
features or the expression of landmark genes or both and
(ii) identifying the genes exhibiting zonal patterns by
modeling gene expression against the distance to the
veins.[5,6,128] Furthermore, by integrating scRNA-seq, the
proportions of hepatic cells within each spot could
be deconvoluted; thus, the distributions of hepatic cells
along the portal-central axis could be deduced.[5]

Approximately 60, 140, and 80 landmark genes for
the zonation of mouse hepatocytes, ECs, and HSCs
have been identified, respectively.[18,125,127] Nearly 50%
of hepatocyte genes[127] and 30% of EC genes[125] are
nonrandomly expressed. The expression of most of
these genes monotonically increases or decreases
portal-centrally, and only a few genes show peak
expression in the intermediate lobule layers.[125,127] For
mouse hepatocytes, periportally biased genes are
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(A)

(B)

(C)

F IGURE 2 Common hepatic cell types of murine liver and their zonal distributions in homeostatic and NAFLD livers. (A) Common hepatic
cell types in mouse liver. Gene (in light-blue)/protein (in dark blue) markers are listed below corresponding cell populations. Since monocyte-
derived KC acquires most of hallmarks of liver-resident KC, it is hard to discriminate them unless the newly derived ones.[116]. Please refer to
Supplemental Table S1 (http://links.lww.com/HEP/F21) for detailed resources for each marker. (B) Schematic diagram of the structural unit
of the liver—liver lobule (left-bottom panel) and the zonal distributions of hepatic cells in homeostatic liver. (C) Representative view of liver
lobule in NAFLD mouse. NAFLD liver is characterized by the accumulation of lipid droplets in hepatocytes, the emergency of ballooned
hepatocytes, defenestrated LSECs, increased inflamed immune cells, and the accumulation of collagen fibers. Notably, during NAFLD
pathogenesis, HSC transitions from a quiescent state (qHSC) to activated state (aHSC). The phenomenon is observed with no zonal bias in
mouse NAFLD livers.[92,117]
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enriched in oxidative phosphorylation, liver secreted
proteins, and complement cascades, which have been
further demonstrated to be closely related to KRAS
signaling.[127] Pericentrally biased genes are involved in
detoxification, bile acid biosynthesis, and proteasome
components whose master regulator is WNT
signaling.[54,127] Beyond these, the distributions of
hepatic myeloid cells and lymphocytes across murine
liver lobules have been revealed (Figure 2B).[5,126] B
cells, T cells, and stromal cells could be seen across all
zones, while conventional DCs (cDCs) majorly enrich
near the portal vein[5]; KCs preferentially locate
in periportal zone[5,126]; and NK T cells are also
concentrated around periportal region.[126]

Notably, zonal patterns may vary by time, biological
conditions, and species. A correlation between bio-
logical rhythms and hepatocyte zonal patterns has been
observed in mouse livers.[129] Based on a mixed-effect
model, ~20% of hepatocyte genes are rhythmic on a 24-
hour time scale, and 7% of them are both zonated and
rhythmic.[129] When treated with acute acetaminophen
(APAP), many zonation genes undergo expression
alterations, making their zonal patterns no longer exist,
while the others remain zonally different.[6] Moreover,
there are discordant and concordant zonation profiles
between mice and humans.[130] For example, the
pericentral genes CYP1A2 and LGR5 and the periportal
genes HAL and SDS of human hepatocytes remain
conserved in mice, while SLC2A2 expressed pericen-
trally in humans but periportally in mice.[130] Therefore,
one should choose appropriate landmark genes for a
given biological condition. In our opinion, genes that are
highly expressed in a zonal manner and remain robust
to cofactors may be good candidates.

LIVER DEVELOPMENT

Liver development proceeds through several phases.
During embryonic liver development in mice (Figure 3A),
soon after the hepatic specification of endodermal cells, the
liver diverticulum forms. The hepatoblasts (HBs) within the
liver diverticulum then migrate, forming the nascent liver
bud, which grows and gradually forms the liver.[131–133] The
liver keeps maturing after birth until its functions are fully
established.[28] The whole process involves dramatic
cellular transitions.[28,134,135] By depicting these transitions,
scRNA-seq studies have constructed the roadmap of how
hepatic functions are established and how liver zonation
forms.[91,134–136]

The establishment of hepatic functions
follows a stepwise manner

The organogenesis of the mouse liver initiates from the
transition of foregut epithelial cells into HBs (hereafter

the transition is referred as “hepatic transition”).[91]

Using scRNA-seq, Mu et al[91] have depicted the cellular
roadmap of the hepatic transition and found that the
transition followed a linear trajectory, which was
characterized by the gradual depletion of epithelial
features (Krt19, Epcam, and Cldn6) as well as a gradual
upregulation of HB markers (Hnf4a, Dlk, Ttr, and Alb)
(Figure 3B). Moreover, an intermediate state
possessing both epithelial and hepatic features was
observed between foregut epithelial cells and HBs,
which was named liver primodium cell (Figure 3B).[91]

Blood coagulation, hemostasis, and protein com-
plex assembly have been found significantly activated
at the very beginning of hepatic transition, and
continuously upregulated until the generation of
hepatocytes[91,135]; oxidation–reduction processes,
lipid biosynthesis, and metabolism are significantly
induced since liver primodium cells were emerged.[91]

In addition, genes playing important roles in major
hepatic functions, such as detoxification, transport,
fatty acid metabolism, and glucose metabolism, have
been found progressively upregulated when HBs
differentiated into hepatocytes.[135] Together, the
hepatic functions are established in a stepwise
manner during mouse embryonic liver development
(Figure 3B).

Tracing the differentiation of HBs

HBs are bipotent progenitors that are capable of
differentiating into hepatocytes and cholangiocytes
during liver development.[131–133] By pseudotemporal
analysis, scRNA-seq studies have identified a branched
trajectory of HB differentiation (Figure 3B) that is
conserved between mice and humans.[134–136] Based
on the trajectory, investigators have determined the
molecular dynamics and precise gene regulation driving
the different fates of HBs (Figure 3B).[134–136]

In mice, as HBs differentiate into hepatocytes, the
expression of transcription factors (TFs) that are
essential for hepatocyte lineage development, such as
Ppara, Rora, and Nr1i3, have been found induced
immediately once HB emerges.[134–136] In combination
with the sequential acquisition of hepatic functions
mentioned earlier, the process is considered the
“default” route for HB differentiation.[134,135] In contrast
to hepatocyte lineage development, biliary lineage
development seems to be highly regulated. During
mouse liver development, some HBs express TFs that
control biliary lineage development, such as Sox9,
Sox4, Hnf1b, and Onecut1, and gradually differentiate
into cholangiocytes.[134,135] Pseudotemporal analysis
has shown that pathways controlling biliary morpho-
genesis, such as epithelial tube morphogenesis, WNT
signaling, and NOTCH signaling, are significantly
upregulated during HB-to-cholangiocyte transition in
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mice (Figure 3B).[135] It is worth noting that the PKC/
MAPK cascade is strikingly upregulated from the middle
phase of mouse cholangiocyte development.[135] When
treated with a PKC agonist for 48 hours, mouse HBs
displayed clear cholangiocyte characteristics, indicating

that the MAPK cascade could promote cholangiocyte
maturation in the mouse embryonic liver.[135]

In addition, scRNA-seq studies identified heterogene-
ities of mouse HBs in the aspects of proliferative status
(also seen in human HBs), expression of Lgr5, and

(A)

(B) (C)

F IGURE 3 Pseudo-temporal analyses reveal the cellular trajectory of mouse embryonic liver development. (A) Schematic diagram showing
different phases of mouse liver organogenesis. (B) The cellular trajectory and the molecular dynamics of the development of hepatic epithelium.
Epithelial cells of foregut endoderm decrease the expression of epithelial signature genes, upregulate hepatic genes, and gradually transition into
hepatoblasts (HBs) (the transition is referred as “hepatic transition” in this article). During hepatic transition, an intermediate state expressing both
epithelial and hepatic gene signature at low level has been identified,[91] which was regarded as emergence of liver primordium [labelled in dark
blue in (A)]. HBs would further differentiate into hepatocytes (HB-to-Hep) or cholangiocyte (HB-to-Chol). Key regulatory genes and biological
processes underlying the whole development process are shown. (C) Heterogeneity of hepatoblasts in embryonic mouse livers. Notably, the
heterogeneities in the aspects of proliferative status and expression of ID3 are also observed in human embryonic livers.
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expression of Id3 (ID3 in human HBs) (Figure 3C).[134–136]

Proliferative HBs account for a large proportion of total
HBs and are observed across different embryonic
development stages in both mouse and human fetal
livers.[134,135] Lgr5+ HBs and Id3+ HBs constitute only
a small proportion of total mouse HBs (∼2% and
<6%, respectively) and tend to be present at the early
stage of liver development.[134,136] Interestingly, these
heterogeneities have little effect on the differentiation
potential of HBs. All of the abovementioned HBs could
give rise to hepatocytes and cholangiocytes in vitro or
in vivo, without significant differences in either their
distributions along the in silico lineage trajectory or the
efficiency of differentiation.[134–136] One hypothesis is that
different biological pathways are invoked during HB
differentiation, each of which could drive differentia-
tion independently and compensate for the other,
guaranteeing the morphogenesis of the liver.

The formation of liver zonation

Another intriguing question is when liver zonation forms.
During human embryonic liver development, 2 functionally
different subpopulations of maturing hepatocytes have been
identified.[134] One subpopulation was represented by high
expression of VTN, which was active in coagulation,
detoxification, and organic acid metabolism.[134] The other
subpopulation highly expressed PRL13 and was associated
with increased growth ability.[134] Although these subpopu-
lations tended to occupy different regions of liver lobules at
19 weeks postcoitum in humans based n RNA in situ
hybridization experiments, the spatial pattern was unrelated
to liver zonation.[134] Moreover, these 2 subpopulations were
absent from mouse fetal livers.[134] Therefore, liver zonation
may not be fully formed before birth.

Combining scRNA-seq and immunostaining, Liang
et al[28] have assessed the gene expression dynamics of
hepatocytes in newborn mice at postnatal days (D) 1, 3,
7, 21, and 56. Gene expression analysis of 18 hepatocyte
landmark genes and immunostaining of representative
zonation hallmarks (E-cadherin and CYP2E1) revealed a
gradually distinguishable zonation signature from D1 to
D56.[28] When aligned to the previously defined zonation
layers,[127] only hepatocytes at D56 exhibited a consistent
layer distribution with that of adult hepatocytes.[28] In
addition, hepatocytes from different layers at D21 were
still mixed when projected into TSNE space, suggesting
that liver zonation was not yet fully developed in D21
hepatocytes.[28] Together, these data demonstrate pro-
gressive zonal construction in postnatal mouse livers.

LIVER REGENERATION

The liver has a remarkable regeneration capacity.
Experimental models with liver injury induced by

3,5-diethoxycarbonyl-1,4-dihydrocollidine, (DDC)[10] car-
bon tetrachloride (CCl4),[18] APAP,[6] and partial hepatec-
tomy (PHx)[13] have been widely studied in this
field.[137–139] By scRNA-seq and spatially resolved tran-
scriptomics, investigators have unveiled new insights into
the cellular source and the molecular trajectory of liver
regeneration.[6,10,13,52,140]

The cell source of hepatocyte proliferation

Hepatocytes are able to self-renew in the homeostatic
liver and enter the cell cycle rapidly once the liver
is damaged.[114] However, whether this capacity is
possessed by specific cell subpopulations remains
controversial. In homeostatic mouse livers, lineage
tracing-based studies have reported several hepatocyte
subpopulations with an elevated ability to proliferate,
including hybrid hepatocytes[141] expressing low amounts
ofSox9 near the PV, Terthigh hepatocytes,[142] and LGR4+

hepatocytes[143] that are stochastically distributed across
lobular zones, as well as a hepatocyte subpopulation
situated at middle zone.[144,145] In healthy human livers,
an AFP+ hepatocyte subpopulation displaying an
enhanced cellular division without a regional enriched
pattern has been recently revealed by scRNA-seq
study.[29] On injury, varied hepatocyte subpopulations
have been implicated in liver regeneration. By lineage
tracing, periportal hybrid hepatocytes could give rise to
new hepatocytes after repetitive administration of CCl4 to
mouse livers,[141] while mid-zone hepatocytes have been
implicated in liver regeneration after PHx injury.[13,144,145]

However, in APAP-induced mouse liver injury, as
revealed by scRNA-seq, 10X Visium, and smFISH,
Mki67+ proliferative hepatocytes were not enriched in
specific zones.[6] Taken together, these findings illustrate
that the cell sources of hepatocytes that possess
elevated proliferation ability may depend on injury
conditions.

The molecular dynamics in post-PHx
regeneration

The proliferation of hepatocytes is thought to be
responsible for regeneration in mildly injured livers and
those after PHx.[114,138,139] Relying on pseudotemporal
analysis, recent scRNA-seq studies have further demon-
strated the molecular dynamics during post-PHx regen-
eration of mouse livers.[13,52] After downregulating metab-
olism-related pathways, such as fatty acid metabolism
and amino acid metabolism, quiescent hepatocytes
entered a transition state.[13] A remarkable proportion of
hepatocytes in the transition state reactivated those
previously suppressed metabolic pathways entering a
metabolically hyperactive state, while the others upregu-
lated the cell cycle, RNA splicing, and other proliferation-
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related pathways and started to proliferate.[13] These
suggest a division-of-labor model of post-PHx regener-
ation, which is thought to balance the proliferation and
metabolic demands of a regenerating liver.[13]

Fetal/progenitor-like programs are
upregulated during liver regeneration

Interestingly, gene expression programs activated in
fetal or postnatal livers have been found induced in
post-PHx regeneration of murine livers (Figure 4A).
TFs activated in mouse postnatal day 14 hepatocytes,
such as RELA, E2F1, and TRP53, are upregulated in
regenerating hepatocytes after PHx.[13] Moreover,
through integrating scRNA-seq and scATAC-seq, a
hepatocyte subpopulation at 48 hours after PHx was
identified that expressed progenitor-related genes
(Afp, Axin2, and Yap), whose master TFs include
those controlling embryonic liver development
(Gata6, Sox9, and Sox17).[52] This phenomenon
was confirmed by immunohistochemistry staining.[52]

These data indicate the emergence of fetal-like
programs during post-PHx regeneration. Notably,
fetal-like programs existed transiently, with the signal
markedly decreased at 72 hours after PHx and nearly
undetectable at 96 hours after PHx.[52] In addition,
in severely injured mouse livers induced by APAP,
fetal-like programs, such as the expression of Afp,
could also be traced (Figure 4B).[6] Specifically,
smFISH reveals that Afp was expressed exclusively

in the interface between damaged and nondamaged
regions, which represented the leading edge of
regeneration on APAP injury.[6]

These fetal-like expression programs resemble those
activated in liver progenitor-like cells (LPLCs).[10,146]

LPLCs are hybrid cells displaying transcriptomic features
of both hepatocytes (Hnf4a and Alb) and cholangiocytes
(Sox9 and Spp1).[10,146] On chronic or severe injury,
mature epithelial cells may reprogram to LPLCs, which
contribute to liver regeneration by giving rise to new
hepatocytes and cholangiocytes (Figure 4B).[114,140,147]

Previously identified progenitor-like signature[147]

induced during chronic injury was significantly
upregulated in fetal-like hepatocytes at 48 hours after
PHx.[52] Together, these results indicate that fetal/
progenitor-like programs are upregulated during liver
regeneration. Whether these fetal/progenitor-like
hepatocytes that emerge under different circumstances
are the same population or subpopulations of LPLCs
remains elusive. For now, their identification heavily
relies on a few markers.[6,13,52,146] Studies systematically
comparing the molecular traits of all these fetal/
progenitor-like populations are urgently needed. In
addition, it is still unclear whether hepatocytes must go
through such a fetal/progenitor-like state to enter the
cell cycle. Notably, it has been reported that ~24.2%
of hepatocytes were derived from LPLCs in DDC–treated
mouse livers.[148] In our opinion, it is possible that there
are multiple mechanisms functioning simultaneously
to guarantee the rapid repair and regeneration of
the liver.

The bipotential ability of LPLCs implies great clinical
significance in regenerative medicine. Given the
relatively small proportion of LPLCs, they are difficult
to isolate.[149] To solve this problem, transition and
expansion media have been developed to convert
mature mouse or human hepatocytes into progenitor-
like cells in vitro.[150,151] ScRNA-seq showed that
transition and expansion media–induced human cells
upregulated EPCAM, SOX9, CD24, and CK19, imply-
ing their resemblance to those genuine progenitors
identified in vivo.[150] Induced LPLCs provide new
ideas for the development of cell-based therapies,
which may improve the treatment of chronic hepatic
disorders.

NONALCOHOLIC FATTY LIVER
DISEASE

NAFLD, a leading chronic liver disease worldwide,
has now become the fastest growing cause of
liver cancer.[152] The pathological spectrum of
NAFLD encompasses simple steatosis, NASH, and
fibrosis.[153–155] The liver fibrosis may further progress
into the irreversible diseases including cirrhosis and
cancer.[153,154] Although many efforts have been

(A)

(B)

F IGURE 4 Single-cell studies unveil cellular transitions of hep-
atocytes during mouse liver regeneration. (A) On partial hepatectomy
(PHx), a hepatocyte (Hep) subpopulation expressing gene signatures
related to fetal/postnatal hepatocytes has been identified.[13,52]

However, whether Heps must go through such a fetal/progenitor-like
state to enter cell cycle remains elusive. (B) On chronic or severe
injury, a hepatocyte subpopulation resembles liver progenitor-like cells
(LPLCs) has been identified in mouse livers.[6] To be noted, whether
these fetal/progenitor-like hepatocytes are the same population or
subpopulations of LPLCs remains elusive.
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devoted to resolving the pathogenesis of NAFLD, the
molecular mechanism of the disease remains incom-
pletely understood. A major obstacle in this field is the
limited accessibility of human NAFLD samples. Vari-
ous animal models have been developed to mimic
human NAFLD phenotypes,[156] such as CCl4-induced
liver fibrosis model and diet-induced NAFLD mouse
models, including Western diet model, amylin liver
NASH model (high-fat and high-fructose diet), high-fat
and high-cholesterol model, choline-deficient but high-
fat model, methionine- and choline-deficient diet
model, and methionine-deficient and choline-deficient
l-amino acid-defined, high-fat model.[16–18,113,157]

These models successfully recapitulate the main
characteristics of human NAFLD, thus are widely
applied to construct the cellular landscape of the
diseased livers and to identify NAFLD-associated cell
subtypes, boosting the discovery of key factors in
NAFLD.[5,8,18,113,158,159]

NAFLD-associated cell types

HSCs account for <10% of cells within the liver, but their
activation is the major contributor of pathologic fibrosis in
both patients and animal models.[155,158,159] On fibrogenic
stimulation under different etiologies, quiescent HSCs
would turn into activated HSCs (aHSCs) (Figure 2C).
[92,160] Through scRNA-seq, 4 aHSC subpopulations
have been identified in NASH livers of foz/foz mice,
including the classical collagen-secreting myofibroblasts
(Acta2+Col1a1+Col1a2+Timp1+), proliferative HSCs
(Cdk1+), inflammatory HSCs (Cd36+Ly6c+), and
intermediate activated HSCs (Irf7+) (Figure 5A).[92]

Interestingly, the intermediate activated states of HSCs
that showed less expression of fibrogenic genes were
observed across studies,[11,92] suggesting a multi-step
HSC activation during NASH pathogenesis. Besides
cellular heterogeneity, zonal patterns of HSC activation
have been determined by single-cell technologies and
computational approaches.[18,92,117] Central vein-
associated HSCs, but not portal vein-associated HSCs,
were considered as the dominant cell source of aHSCs/
myofibroblasts in CCl4-induced fibrotic livers.[18]

However, in diet-induced NASH mouse livers, there
was no significant association between HSC activation
and liver zones (Figure 2C).[92,117] Thus, the activation of
HSC may exhibit a model-dependent zonal
pattern.[18,92,117]

Dysfunction of LSECs is permissive for NAFLD
pathogenesis and liver fibrosis (Figure 5B).[161,162]

In diet-induced NASH models, increased lipid
metabolism, antigen presentation, and chemokine
release, represented by upregulation of Fabp4, Cd36,
and Cxcl9, respectively, occurred in all LSEC
subpopulations across different lobular zones
(Figure 5B).[113] Such a dysfunctional phenotype

(upregulation of FABP4 and CXCL9) could also be
traced in bulk RNA-seq data set of patients with
NASH.[113] Similarly, dysfunction of LSEC, represented
by the downregulation of gene programs in response to
shear stress, presented in all zones of CCl4-induced
cirrhotic murine livers.[90] Moreover, combining
scRNA-seq and IF staining, two novel EC subpopula
tions (CD34+PLVAP+VWA1+ and CD34+PLVAP+

ACKR1+) have been linked to scar formation in
fibrotic niche of human cirrhotic livers (Figure 5B).[8]

These scar-associated ECs express NOTCH ligands,
which interact with NOTCH receptors on HSCs, thus
activating HSCs through NOTCH signaling and
promoting fibrillar collagen expression in HSCs
(Figure 5B).[8] Capillarization, namely, loss of
fenestrae and development of a basement
membrane, is an another characteristic of LSEC that
emerges from the early stage of NAFLD
pathogenesis.[161,162] A zone 3-preferential LSEC
capillarization pattern (upregulation of Cd34) has
been observed in the CCl4-induced mouse cirrhotic
livers.[90] However, whether capillarization of LSECs
displays zone-biased pattern in preclinic NASH
models or human NASH livers remains elusive.

Macrophages have long been implicated in promot-
ing inflammation and mediating fibrosis in the progres-
sion of NAFLD.[116,163] By comparing the cell compo-
nents across different NAFLD pathologic stages, KCs
have been found to be gradually lost during disease
progression (Figure 5C).[16,45,164] Meanwhile, the
number of infiltrating monocytes grows, and
they rapidly differentiate into monocyte-derived
macrophages and monocyte-derived KCs, compen-
sating for the reduction in the number of KCs
(Figure 5C).[45,164] Recent single-cell studies have
identified novel macrophage subsets that are
associated with NAFLD progression (Figure 5C).
Lipid-associated macrophages marked by the
expression of Cd9, Spp1, and Trem2 were initially
identified in adipose and liver tissues of obese mice and
human,[45,119] which had been found latter derived from
recruited circulating monocytes and conserved across
multiple species.[5,45] NASH-associated macrophages
highly expressing Trem2, Gpnmb, and Cd9 were
identified in amylin liver NASH–induced and choline-
deficient l-amino acid-defined, high-fat–induced NASH
mice.[113] Scar-associated macrophages (SAMs) were
detected in fibrotic niches of human patients with
cirrhosis and CCl4-induced mouse fibrotic livers.[8]

SAMs were able to promote human HSC proliferation
through the interactions of the ligands TNFSF12 and
PDGFA with the receptors TNFRSF12A and PDGFRA
on HSCs.[8] Although identified in independent studies,
lipid-associated macrophages, NASH-associated mac-
rophages, and SAMs share similar molecular features
regarding marker genes, raising the hypothesis
that they are the same population (Figure 5C).[45,116]
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(A)

(B)

(C)

(D)

F IGURE 5 The transitions of NAFLD-associated cell populations during NAFLD pathogenesis. (A) The activation of HSC. Notably, 4 sub-
populations of activated HSCs have been uncovered by scRNA-seq studies. (B) Normal EC undergoes transcriptomic changes and turns into
dysregulated EC. There are 2 scar-associated EC subsets identified in the fibrotic niches of human cirrhotic livers. (C) The alternations in
macrophage population. Macrophage shifts from a KC-dominated population to the one with profound increase in recruited macrophages. Subsets
of macrophage have been identified associated with NAFLD including lipid-associated macrophage in obese/steatotic livers, NASH-associated
macrophage in NASH livers, and scar-associated macrophage in fibrotic niche of cirrhotic livers. Given that they share common signature genes,
there is an assumption that they are the same population.[45,116] (D) The population shifts of cDCs. The number of cDC2 cells is significantly
increased in both obese and NASH mice, while cDC1 cells are more abundant in NASH than those of obese livers. Gene (light-blue)/protein
(purple) markers of mouse (m) or human (h) are shown. Abbreviations: CD8+ Trm, liver-resident memory CD8+ T cell; cDCs, conventional dendritic
cells; EC, endothelial cell; MoKC, monocyte-derived KC; MoMF, monocyte-derived macrophage.
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We hypothesize that these TREM2+ macrophages
emerge at the very beginning of NAFLD pathogenesis
and constantly contribute to the progression of NAFLD.

In addition, there are other infiltrated immune cells
linked to the progression of NASH through single-cell
studies.[16,17,165] Compared with normal livers, exhausted
CD8+ T cells highly expressing Pdcd1 and Tox have
been found more prevalent in diet-induced NASHmouse
livers.[165] Increased liver-resident CD8+ memory T cells
(CD69+CD8+) in high-fat and high-cholesterol–induced
mouse NASH livers and human NASH livers have been
shown to attract HSCs in a CCR5-depent manner and
predispose aHSCs to apoptosis (Figure 5A).[17] Time-
series scRNA-seq and flow cytometry assays indicated
the elevation of cDCs derived from bone marrow cDC
progenitors in obese and NASH mouse livers under
different etiologies (Figure 5D).[16] Among them, the
number of CD103−CD11b+ cDC2 cells was significantly
increased in both obese and NASH mice compared with
normal mice, while CD103+CD11b− cDC1 cells were
more abundant in NASH than those of obese livers.[16] In
human NASH livers, an increased number of cDC1s
(CD1c-CD141+XCR1+) was also observed, which was
highly associated with NASH pathologic scores.[16]

Moreover, recent sequencing of physically interacting
cells suggested that cDCs in NASH promoted
the reprogramming of inflammatory T cells, which is
linked to the worsening of liver pathology in NASH
(Figure 5D).[16]

The development of therapy strategies

NAFLD pathologies can be largely reversed by
physical activity, dietary interventions, and pharmaco-
logical treatment.[166] However, there is no approved
pharmacotherapy for late-stage NAFLD with severe
fibrosis or cirrhosis. The abovementioned NAFLD-
associated cell types or subtypes offer valuable
resources for drug target screening. For example,
deletion of cDC1 in Xcr1DTA mice abrogated liver
pathology after methionine-deficient and choline-defi-
cient diet feeding for 2 weeks.[16] Moreover, cell-type
specific factors are excellent candidates for potential
therapy targets, such as LPAR1 restrictedly to patho-
genic collagen-producing HSCs[18] and OPN (coded by
Spp1) secreted by TREM2+ macrophages,[167] target-
ing which could attenuate NAFLD in mice.[18,167]

Blockade of IL-15 and CXCR3, which were crucial for
the maintenance of CD8+ resident memory T cells,
partially inhibited fibrosis resolution in mice.[17] On the
other hand, scRNA-seq combined with perturbation
studies has been employed to decipher the mechanism
of antifibrotic drugs.[168–170] For example, elafibranor
treatment markedly reduced the abundance of Trem2+

macrophages,[113] and nizatidine, a histamine receptor
H2 blocker, improved liver disease progression by

targeting macrophages.[169] These studies highlight the
power of single-cell studies in screening potential
therapeutic targets.

LIVER CANCER

Liver cancer is a complex disease involving genomic
alterations, viral infection, metabolic rewriting, and
immune dysregulation.[171] Liver cancer has several
pathological forms, with HCC being the most common
form, followed by intrahepatic cholangiocarcinoma
(ICC), mixed hepatocellular cholangiocarcinoma, and
hepatoblastoma. The application of single-cell technol-
ogies and spatially resolved transcriptomics has greatly
deepened our understanding of liver cancer in the
aspects of tumor heterogeneity, tumor microenviron-
ment (TME), cell communications, and tumor spatial
architectures.[14,130,172–175]

The heterogeneity of malignant cells

When analyzed by scRNA-seq, malignant cells usually
form patient-specific clusters on TSNE or UMAP,
suggesting the high interpatient heterogeneity of malig-
nant cells.[173,174] To measure tumor heterogeneity
precisely, a sampling strategy for a given scRNA-seq
data set was designed to measure the correlation of cell-
type specific signatures of both malignant and non-
malignant cells before and after sampling.[130] As the
number of patients increased, the signature of malignant
cells changed, while those of nonmalignant cells were
better retained once beyond 3 patients, demonstrating
the higher interpatient variability of malignant cells than
nonmalignant cells.[130] Furthermore, the heterogeneity
of malignant cells was quantified by evaluating the
overall variation in gene expression, which was defined
as intratumor heterogeneity.[174] The intratumor hetero-
geneity score well predicts patient outcomes, with a high
intratumor heterogeneity value associated with worse
prognosis.[174]

In addition to interpatient heterogeneity, the inter-
cellular heterogeneity of malignant cells has been
unveiled through single-cell studies, such as malig-
nant cell subpopulations defined by varied gene
expression or copy number variant spectra,[176]

circulating malignant cells at different vascular
sites,[177] cancer stem cells subpopulations with
various cell surface markers (CD24+, EpCAM+,
CD133+, and Triple+),[178] and malignant cells with
varied degree of proliferation.[48,179] These intercel-
lular heterogeneities render remarkable effects on
tumor progression.[48,178,179] For example, 4 malig-
nant cell clusters representing G2/M, G1/S, G0. and
an intermediate phase of cell cycle have been
detected from scRNA-seq data set of 5 HCC cell
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lines through K-means analysis based on cell-cycle–
related genes.[48] The increase in fraction of cells in
G0 phase, which signified the decrease of prolifer-
ation capability, had a strong correlation with the
decrease in metastatic potential.[48] Through scRNA-
seq, investigators found that the proliferative subset
(highly expressing G2/M genes) of Prom1+ HCC cells
in mouse models were significantly correlated to poor
prognosis of HCC.[179]

Tumor immune microenvironment

Many efforts have been made to systematically
depict the tumor immune microenvironment of liver
cancer.[14,51,180,181] A recent scRNA-seq study profiling
more than 1 million cells from 124 patients and 8 mice
with liver cancer systematically delineated the immune
landscape of liver tumor.[14] Moreover, there are
another 3 global immune landscapes of HCC, covering
about 77,000,[51] 41,700,[181] and 17,432,600[180]

immune cells from 16, 7, and 13 patients, respectively.
To uncover the molecular features of T cells, a recent
study sequenced 5063 CD45+CD3+ T cells from the
tumor, adjacent normal, and blood samples of 6
patients with HCC.[31] These scRNA-seq studies offer
great details of tumor-infiltrating immune cells, includ-
ing T cells, macrophages, neutrophiles, DCs, NK cells,
and others,[14,51,180,181] providing comprehensive
resources to understand immune landscape of tumor
ecosystem and to interpret its roles in liver cancer.

Five tumor immune subtypes including immune
activation, immune suppression mediated either by
myeloid or stromal cells, immune exclusion, and immune
residence phenotypes have been unraveled.[14] Notably,
tumor-associated neutrophils enriched in the myeloid
cell–mediated immune suppressive TME were associ-
ated with an unfavorable prognosis.[14] Meanwhile,
in vivo neutrophil depletion in mouse models attenuated
tumor progression, confirming the pro-tumor phenotypes
of tumor-associated neutrophils.[14] Besides that, the
comparison between tumor and adjacent normal sam-
ples also reveals tumor-associated immune cell sub-
populations (Figure 6A). Exhausted CD8+ T cells,
CTLA4+ CD8+ T cells, XCL1+ CD8+ T cells, PDCD1+

CD4+ T cells, FOXP3+ regulatory T cells, CTLA4high

regulatory T cells, TREM2+ macrophages, CD163+

macrophages, CCL18+ M2 macrophages, LAMP3+

DCs, CCL4+ neutrophils, and CD160+ NK cells have
been reported to be preferentially enriched in tumor
regions.[14,31,51,118,183] In contrast, cytotoxic CD8+ T cells,
FGFBP2+GZMB+ CD8+ T cells, and cytotoxic NK cells
have been found diminished in tumors (Figure 6A).[180]

Rather than being static, the immune microenviron-
ment dynamically changes during tumor progression
(Figure 6A). Compared with primary tumors, relapsed
HCCs carry a TME with increased CD8+ T cells

and DCs as well as reduced regulatory T cells and
proliferative T cells.[21] It is worth noting that rather
than exhibiting an exhausted state, CD8+ T cells in
relapsed HCCs were in a low cytotoxic status, offering
a new mechanism of immune escape in relapsed
tumors.[21] In addition, TME alters as tumor
metastasizes.[184] SPP1+ macrophages and MRC1+

CCL18+ macrophages have been found to be
specifically increased in liver metastases of colorectal
cancer.[184] Therapy intervention also changes the
immune microenvironment.[173,184,185] ScRNA-seq
reveals that radiotherapy can alter the TME by
eliminating immunosuppressive hepatic macrophages
and increasing hepatic T-cell infiltration.[185] In patients
who respond to neoadjuvant chemotherapy, their TME
transitioned to an antitumor state with increased
cytotoxic T cells and decreased immunosuppressive
cells, which was not observed in nonresponsive
patients.[184]

In combination with deconvolution algorithms, the
signature genes of these tumor-associated immune cell
subtypes identified from single-cell studies allow us to
infer immune cell proportions within the TME from bulk
RNA-seq data sets.[21,31,180] Furthermore, when linked
to clinical information, prognosis-associated immune
cell types can be identified.[21,31,180] Based on this
strategy, XCL1+CD8+ T cells have been found to be
correlated with better survival and antitumor
response,[180] while CD161+CD8+ T cells, KLRB1high

CD8+ T cells, and CCL18+ M2 macrophages have been
linked to a poor prognosis.[21,180] Subtype-specific
genes could be further examined to elucidate their
roles in the TME. The expression of LAYN, a signature
gene of exhausted CD8+ T cells and tumor-specific
Tregs, was significantly correlated with poor patient
prognosis;[31] CCL5 had been shown to act as an
important mediator for immune evasion of circulating
tumor cells in the TME.[177]

Cell communications and spatial
architectures

Cells within the tumor ecosystem do not operate in
isolation but closely communicate with other
cells.[186,187] Based on ligand–receptor pairs, the sin-
gle-cell atlas facilitates the inference of cell–cell
communication.[93] Within the interaction network
between tumor cells and nonmalignant cells, cancer-
associated fibroblasts and SAMs were identified as
interaction hubs, representing 49.3% of all
interactions.[130] Several recurring modules in the
interaction network, including matrix remodeling, ERBB
signaling, MET signaling, and WNT signaling, have
been previously linked to tumor progression.[130] For
tumor-immune interactions, PD-L1+ or CTLA4+ tumor
cells showed recurrent interactions with CD80+ DCs
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(A)

(B) (C)

F IGURE 6 Tumor-associated cell populations and spatial architectures of liver cancer. (A) Tumor-associated cell populations in liver cancer.
Left: immune or stromal cell populations enriched in adjacent normal tissues, primary HCCs, relapse HCCs, and liver metastases of colorectal
cancer (CRC), respectively. Right: altered cell subpopulations on treatment. (B) Three major types of spatial architectures of HCC revealed by
imaging mass cytometry.[175] Normal-like region is with strong staining for hepatic cell markers keratins and E-cadherin. Fibrotic region exhibits
remarkable enrichment of ECM and α-SMA labelled fibroblasts. Highly proliferative region is characterized by the enrichment of Ki-67+ proliferative
tumor cells and irregular blood vessels. (C) An example of cell-cell communication located at the tumor invasion front.[182] Abbreviations: DCs,
dendritic cells; ECs, endothelial cells; ECM, extracellular matrix; NK cells, natural killer cells; Treg, regulatory T cell.
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and innate-like CD161+ CD8+ T cells, which might
reduce the efficiency of antigen presentation and the
activation of T cells.[21] A recent multiregional scRNA-
seq analysis of 7 patients with liver cancer (4 HCCs and
3 ICCs) revealed that the ligand-receptor interaction
between tumor cells and macrophages (LGALS9-
SLC1A5 and SPP1-PTGER4) were consistently
observed across multiple tumor regions and across
multiple cohorts.[188] Notably, these communications
were associated with tumor aggressiveness.[188] There
are also extensive interactions between different
immune cell types.[14,21,180,188] For example, PD-L1+

tumor-associated neutrophils could directly interact with
CD8+ T cells, downregulating the expression of T-cell
cytotoxic marker IFNγ and activation markers CD25 and
CD69, thus mediating an immune-suppressive pheno-
type in liver cancer.[14] Furthermore, tumor lesions may
communicate with other parts of the body through the
immigration of immune cells.[51] Tumor-infiltrating
LAMP3+ DCs could migrate to hepatic lymph nodes,
and subpopulations of lymphocytes and macrophages
had been reported to migrate to ascites from tumors.[51]

However, further investigation is needed to determine
how these across-tissue communications affect liver
cancer pathogenesis.

Importantly, the expeditious growth in spatial
techniques promises to decode the spatial proximity
of cells within the tumor ecosystem in a more direct
and comprehensive way.[175,182,189] Applying imaging
mass cytometry to 134 patients with HCC, Sheng et al
[175] summarized 3 major types of intratumor regions
carrying distinct topological features: (i) normal-like
regions with highly expressed hepatocyte markers
and intact blood vessels; (ii) fibrotic regions sur-
rounded by immune cells; and (iii) highly proliferative
regions with few immune cells and irregular blood
vessels (Figure 6B). Furthermore, 16 topological
units (also called cellular neighborhoods, CNs) were
identified.[175] Some of these CNs were correlated
with patient survival, with cancer cell–enriched CNs
associated with unfavorable prognosis while CD8+

T-cell–enriched CNs were associated with prolonged
patient survival.[175] For the detailed spatial architec-
ture, the leading edge of the tumor representing the
invasive front has drawn much attention (Figure 6C).
[15,130,181,182] Using bulk RNA-seq on laser capture
microdissected regions of liver tumors, Massalha
et al[130] found that SAMs and T cells were more
abundant in the tumor border than in the tumor core.
A progressive comparison from normal to leading-
edge to tumor regions of 7 patients with liver cancer
(5 HCCs, 1 ICC, and 1 mixed hepatocellular
cholangiocarcinoma) was conducted based on 10X
Visium, which revealed that complete tumor capsules
consisting of fibroblasts and ECs might act as
barriers preventing the infiltration of immune
cells.[15] This study also found that tertiary lymphoid

structures mainly existed in leading-edge regions and
that the distinct composition of tertiary lymphoid
structures might be shaped by their distance to tumor
regions.[15] Moreover, a single-cell study involving an
analysis of 39 matched HCC leading-edge and
nontumor specimens by mass cytometry observed
the enrichment of CD4/CD8 double-positive T cells
in leading-edge regions, which is significantly
associated with good prognosis.[181] Another study
on ICC found increased expression of SAA in
hepatocytes close to the invasive front of tumors,
which might recruit FPR1+ macrophages to aid tumor
invasion (Figure 6C).[182]

CHALLENGES AND PERSPECTIVES

In this review, we described the applications of single-cell
and spatial techniques to liver biology and summarized
the progress in this field at unprecedented resolution,
covering topics about formation and maintenance of the
liver, liver regeneration, pathogenesis of NAFLD, and liver
cancer. Relying on single-cell and spatial techniques,
investigators have uncovered extraordinary diversity
in cell populations, state transitions, functions, cell-
to-cell communications and spatial architectures within
the liver, providing novel insights into liver zonation,[125,127]

cell plasticity,[10] microenvironment reprogramming,[5,8]

disease-associated cell populations,[5,11,16] and tumor
topological structures.[15]

Several outstanding challenges still need to be
addressed. (i) A specialized single-cell analysis
protocol considering the characteristics of liver tissue
remains to be established. PCs and NPCs exhibit
very different features after sequencing due to their
distinct morphologies and functions.[29,33,34] Com-
pared with NPCs, large cell size (about 20–30 μm in
diameters) and active metabolism of hepatocytes
lead to increased library size and mitochondrial
counts as well as far more ambient mRNA.[20,29]

When rendered quality control, the same filtering
criteria would cause cell loss mainly in hepato-
cytes.[29] In our opinion, a 2-round data preprocessing
would help resolve the question. Investigators could
first filter data with loose cutoffs, simply perform
clustering, and identify PCs and NPCs according to
well-known markers, and then, different criteria could
be applied to PCs and NPCs to improve the down-
stream analysis. Moreover, it is necessary to filter out
ambient RNAs. Tools such as SoupX[190] and
DecontX[191] would help remove these contaminants.
(ii) How to determine cell identity, especially rare or
intermediate state, remains challenging. Standard-
ized cell ontology of hepatic cells including common,
rare, and disease-related cell populations is urgently
needed. It is very necessary to build a grand liver
single-cell atlas that well integrates the abundant
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published resources.[20,23,192] This would greatly
empower the establishment of the standardized cell
ontology, the discover of undefined cell state/identity,
and the annotation of newly generated data sets. (iii)
The highly organized spatial architectures of the liver
at single-cell resolution and their roles in liver
diseases remain to be elucidated. Current spatial
techniques have limited capacity to juggle resolution
and coverage.[55] Computational strategies integrat-
ing spatial omics data with single-cell data[108]

and mathematic algorithms modeling spatial
changes[193,194] are highly needed. They would help
interrogate gene expression changes across
lobular zones, decode cell communications in-deep
within niches of interest, and uncover new spatial
features. In addition, there are emerging new spatial
technologies offering single-cell or sub-cell
resolution.[64,195] These will boost the discovery of
new insights in the field. (iv) Clinical applications,
such as translating research findings into novel
therapeutic approaches, are still in their infancy. For
example, only countable features from the aforemen-
tioned studies are recognized as potential therapeutic
targets (PGLS and MLXIPL) for HCC.[196–198] Exper-
imental validation and further exploration should be
emphasized.

Experimental technologies and computational strat-
egies offering multiomic or multimodal solutions merit
more attention.[199,200] Multiomic techniques such as
CITE-seq and NanoString CosMx Spatial Molecular
Imager have already unveiled new insights into chronic
liver diseases.[5,45,46,195] Joint profiling of scRNA-seq with
scATAC-seq or DNA methylation allows to delineate the
principles of gene regulation during cell state/identity
transition.[201,202] Despite these, new multimodal integra-
tion strategies are still needed. For example, there is still
limited strategy to integrate scDNA-seq, an insightful
technology to study tumor evolution,[203,204] and scRNA-
seq. In addition, bulk-sample based studies have pre-
sented abundant phenotypes from big cohorts.[205,206]

The integration of bulk data, scRNA-seq, and spatially
resolved transcriptomics can link phenotype information,
cell status, and spatial locations together. However, there
is currently no generally accepted strategies to conduct
such integrative analysis yet.

We believe that new techniques and computational
approaches will further lead us to the full picture of the
cell landscape, the molecular dynamics, and the spatial
architectures of the liver, enabling the identification of
novel therapeutic targets across the spectrum of liver
diseases.
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