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Abstract
Motivation: Accurate and robust estimation of the synergistic drug combination is important for medicine precision. Although some computa
tional methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex 
mechanism of drug combinations and heterogeneity of cancer samples.
Results: We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug 
and cell features. JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. 
Each view of JointSyn captures drug synergy-related characteristics and makes complementary contributes to the final prediction of the drug 
combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample using 
a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and 
explored the differential pattern among cancers. These results demonstrate the potential of JointSyn to predict drug synergy, supporting the 
development of personalized combinatorial therapies.
Availability and implementation: Source code and data are available at https://github.com/LiHongCSBLab/JointSyn.

1 Introduction
Traditional and modern medicines have always utilized the 
combinatorial drug therapies to better treat cancers (Foucquier 
and Guedj 2015). Compared with monotherapies, the drug 
combinations may improve treatment efficacy (Fisusi and Akala 
2019, Sicklick et al. 2019), reduce toxicity and side effects (Al- 
Lazikani et al. 2012, Iqubal et al. 2022) and decrease the drug 
resistance (Tyers and Wright 2019, Liu et al. 2020). However, 
responses to the same drug combination may vary largely 
among patients due to the high heterogeneity of cancers 
(Sicklick et al. 2019). How to select suitable drug combination 
for an individual is a key challenge in personalized cancer ther
apy (Fan et al. 2021). With the development of high-throughput 
drug combination screening in recent years (He et al. 2018), the 
responses of drug combinations can be tested on multiple cancer 
cell lines simultaneously (Astashkina et al. 2012). However, ex
haustive searching of the entire combination space is impossible 
due to high costs and time consumption for the exponential in
crease of potential combinations (Macarron et al. 2011, 
Goswami et al. 2015). Therefore, computational methods are 
needed to discover candidate synergistic drug combinations for 
experimental validation.

O’Neil et al. (2016) published a large-scale study, including 
22 737 experimental measurements of 38 drugs on 39 cancer 

cell lines. NCI published a larger study of the drug combina
tion, including 304 549 measurements of 104 drugs on 60 can
cer cell lines (Holbeck et al. 2017). Based on observed 
responses, a synergy score is calculated for each “drug1-drug2- 
cell line” triple and the triple can be classified as synergistic, an
tagonistic, or additive. DrugComb collected multiple experi
mental datasets and used the unified process to calculate 
synergy scores (Zagidullin et al. 2019, Zheng et al. 2021). In 
addition, pharmacogenomic databases such as Cancer Cell 
Line Encyclopedia (CCLE) provided comprehensive molecular 
measurement of cancer cell lines, including genomic mutations 
and copy number variations, RNA, and microRNA expression 
profiles (Ghandi et al. 2019). These resources provide a solid 
data basis for developing computational models to predict 
sample-specific drug synergy from molecular data.

Before 2018, some machine learning methods were used to 
predict drug synergy, such as Bayesian Network (Li et al. 
2015), Logistic Regression (Li et al. 2020), Random Forest 
(Wildenhain et al. 2015, Li et al. 2017), and XGBoost 
(Janizek et al. 2018, Celebi et al. 2019, Sidorov et al. 2019). 
In recent years, more and more deep learning methods have 
been developed (Fan et al. 2021, Torkamannia et al. 2022). 
Preuer et al. (2018) built DeepSynergy, which used chemical 
information from the drugs and genomic information from 
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cell lines as input, and conical layers to model drug synergies. 
Sun et al. (2020) constructed DTF based on the tensor factor
ization method, which extracted latent features from drug 
synergy information. Jiang et al. (2020) proposed a graph con
volutional network (GCN), which constructed cell line-specific 
drug-drug combination, drug-protein interaction, and protein– 
protein interaction networks. Zhang et al. (2021) built 
AuDNNsynergy which was trained using all tumor samples 
from The Cancer Genome Atlas. Kuru et al. (2022) proposed 
MatchMaker, which used drug chemical structure information 
and gene expression profiles of cell lines in a deep learning 
framework to predict drug synergy scores. Wang et al. (2022)
proposed DeepDDS based on GCN, which transformed the 
drug to a molecular graph. Liu et al. (2022) proposed 
HypergraphSynergy, which converted the drug synergy task to 
the link prediction task and learned drug and cell line embed
dings from hypergraphs. Hu et al. (2022) proposed DTSyn 
based on the transformer model, which extracted cell line ex
pression profiles information with gene embedding (Hu et al. 
2022). Pang et al. (2024) proposed a multimodal DL frame
work, MMSyn, which took the structure, fingerprint, and 
string encoding of drug molecules, gene expression, DNA copy 
number and pathway activity of cancer cell lines as input, and 
used attention mechanisms to integrate these data.

Although the above methods have achieved satisfactory 
performance with randomly splitting, but their accuracy de
creased significantly for unseen drugs and cancer samples, es
pecially for cross-study prediction (Wang et al. 2022). In a 
recent study, Zhang et al. found that the major cause of the 
variability between different studies was the experimental set
tings of drug dosage. They proposed a method to overcome 
experimental variability by harmonizing the dose-response 
curves of different studies (Zhang et al. 2023). The 
Personalized Deep Synergy Predictor (PDSP) proposed by 
Kuru et al. (2024) migrated the prediction of drug synergy 
scores from cell lines to the patient level. With the develop
ment of various transfer learning technologies in computa
tional fields (Dalkıran et al. 2023, Huang et al. 2023), we 
supposed that fine-tuning might improve the drug synergy 
prediction on new drugs and cancer samples even for a small 
dataset. Additionally, current methods modeled two drugs in
dependently, did not sufficiently utilize the association be
tween two drugs. Multidrug representation learning has been 
shown to be efficient in predicting drug-drug interactions 
(Ren et al. 2022, Li et al. 2023). Through multi-drug joint 
representation, the information of the two drugs can commu
nicate with each other, and the model can better learn the fea
tures of the two drugs interactively. The similar idea may also 
promote drug synergy prediction.

Based on these, we proposed a novel deep learning model 
JointSyn to predict the personalized synergistic effect of drug 
combination. It improves from previous models by dual-view 
joint representation of drugs and cell lines, also fine-tuning 
for better robustness. JointSyn is the overall best performer 
on the benchmark datasets for both regression and classifica
tion tasks, for new drugs or cell lines within a dataset or cross 
muti-datasets. Finally, the application of JointSyn to large- 
scale tumor cell lines obtains an estimated atlas of synergistic 
drug combinations for pan-cancer. Overall, both perfor
mance and case studies have proven that JointSyn is an effec
tive tool for predicting the drug synergy, and our study also 
can provide quantitative suggestions for better experimen
tal design.

2 Materials and methods
2.1 Data
2.1.1 Drug synergy dataset
We downloaded two large-scale drug synergy datasets 
(O’Neil, NCI-ALMANAC) from the DrugComb database. 
For each triplet (drug1-drug2-cell line), the synergy score was 
defined by loewe additivity (LOEWE) (Zagidullin et al. 
2019). If a triple has inconsistent signs or higher coefficients 
of variation (>0.5) in synergy scores across replicates, we 
consider the measurements for these triples unreliable, so 
they are excluded. For the remaining triplets, we took the me
dian of multiple measurements as the final synergy score of 
the triple. The final O’Neil dataset consists of 38 drugs, 34 
cell lines, and 12 033 triplets (O’Neil et al. 2016); The NCI- 
ALMANAC dataset consists of 103 drugs, 46 cell lines, and 
236190 triplets (Holbeck et al.2017) (Supplementary Table 
S1). In order to make the model comparison more credible, 
we also used the drug combination sensitivity score (CSS 
value) as the response variable to observe the performance of 
the models (Malyutina et al. 2019).

2.1.2 Drug features
In order to better represent the molecular structure and physi
cochemical properties of the drug, we used the molecular 
graph and the Morgan fingerprint as drug features. SMILES 
of drugs were obtained from PubChem. First, RDKit was 
used to convert the SMILES into a molecular graph, in which 
the nodes are atoms and the edges are chemical bonds 
(Landrum). A 78D feature (Wang et al. 2022) was calculated 
for each node by DeepChem (Ramsundar et al. 2019). 
Secondly, RDKit was used to convert the SMILES into 
Morgan fingerprints with a radius of 6 (Preuer et al. 2018).

2.1.3 Cell line features
Gene expression profiles and somatic mutations of cancer cell 
lines were collected from the CCLE database. Transcripts per 
million (TPM) values were log2 transformed and normalized 
(Barretina et al. 2012). A previous work PaccMann reported 
2128 drug sensitivity-related genes screened from expression 
profiles and PPI networks (Manica et al. 2019). Considering 
the intersection of 2128 genes and the CCLE gene expression 
profiles, expression values of 2087 genes were used as input 
features of cell lines.

2.2 JointSyn
2.2.1 Model architecture
We proposed a novel deep learning method named JointSyn 
to predict drug synergy (Fig. 1A). The input of JointSyn is the 
joint graph of the drug combination, the Morgan fingerprint 
of the two drugs, and the expression profile of the cell lines. 
JointSyn consists of two views: view 1 extracts the embedding 
of drug combination on cell lines, and view 2 contacts the 
combination of drug embedding on cell lines. Subsequently, 
the Prediction Net uses the embeddings from two views to 
predict the drug synergy of the drug combination on cell 
lines. More details about JointSyn are introduced below.

2.2.2 View 1: learning the embedding of drug combination 
on cell lines
The molecular graph of a drug is defined as G¼ ðV; EÞ, 
where V is a set of N nodes represented by vectors, and the 
ith atom can be represented as vi 2 V; E is a set of edges. The 
chemical bond between the ith and jth atoms can be 
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expressed as ei;j 2 E, or it can be expressed as <vi;vj> 2 E. 
In this view, we want to get the embedding of drug combina
tion on cell lines, so the first task is to get a joint graph repre
sentation of the drug combination. As shown in Fig. 1B, four 
methods were proposed to get the joint graph GAB ¼

VAB; EABð Þ from drug A GA and drug B GB:

Super-Edge: We firstly calculated betweenness centrality to 
measure the importance of a node in connecting other nodes 
in each drug molecular graph: 

CB vð Þ ¼
X

s6¼v6¼t

σst vð Þ
σst

: (1) 

Among them, σst is the number of shortest paths from node 
s to t, and σstðvÞ is the number of paths through node v 
among these shortest paths.

Then we selected the two nodes with the highest betweenness 
centrality from two drug graphs, namely v1 ¼ arg maxv2VA

CB vð Þ
and v2 ¼ arg maxv2VB

CB vð Þ, virtually added an edge between 

A
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Figure 1. Overview of JointSyn. (A) The schematic diagram of JointSyn. JointSyn uses drug synergy, drug features and cell line features as input, and 
extracts drug synergy-related features from two views on classification and regression tasks. JointSyn is evaluated by cross-validation, unseen data, 
cross-datasets and case study. (B) JointSyn consists of dual views to capture the drug synergy-related features. The drug combination embedding 
processed through GAT based on the joint graph concatenates with the gene expression embedding to learn the embedding of drug combination on cell 
lines. Each drug’s embedding is processed through MLP based on the morgan fingerprint and concatenated with the gene expression embedding, then 
two drugs’ results are concatenated to learn the combination of drug embedding on cell lines. (C) Four methods for constructing the joint graph of drug 
combination.
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two nodes. Currently, VAB ¼ VA [VB; EAB ¼ EA [EB[

f v1;v2ð Þg. The virtual edge can transfer atomic information be
tween drugs and the model can capture cross-drug interactions.

All-nodes: We constructed a bipartite graph gGAB from the 
molecular graphs of GA and GB, where gGAB ¼GA×GB;
gGAB ¼ gVAB ; gEAB

� �

. Specifically, each atom in the drug GA 
builds edges connection with each atom in drug GB. 
Currently, VAB ¼ VA [VB; EAB ¼ EA [EB [ gEAB .

One-super-node: We defined a super node which was con
nected to each atom in the two drugs: 

VAB ¼ VA [ VB [ fvSupg; (2) 

EAB ¼ EA [ EB

[nA

i¼1

vi; vSupð Þ

[nB

j¼1

vj; vSupð Þ; (3) 

where nA and nB are the numbers of atoms in drug A and B, 
respectively.

Three-super-nodes: Super node 1 (Sup1) is connected to all 
atoms in drug A, and super node 2 (Sup2) is connected to all 
atoms in drug B. Sup1 and Sup2 are aggregated by Sup. 

VAB ¼ VA [ VB [ vSup1; vSup2; vSupf g: (4) 
EAB ¼ EA [ EB [ vSup1; vSupð Þ; vSup2; vSupð Þ

� �

[nA

i¼1

vi; vSup1ð Þ

[nB

j¼1

vj; vSup2ð Þ:
(5) 

Extracting drug combination features based on graph at
tention network: We used the graph attention network 
(GAT) to extract the embedding of drug combination from 
the joint graph GAB ¼ VAB; EABð Þ, whose node feature ma
trix is X and the adjacency matrix is A. The output features 
of the nodes after each layer of iterative propagation are 
as follows: 

h
!0

i ¼ jjk¼1;2...;n σ
X

j2Ni

α kð Þ
ij W kð Þ h

!
j

 !

; (6) 

where k is the number of attention heads, jj concatenates the 
outputs of multiple attention mechanisms, and W kð Þ is the 
weight matrix that can be learned. The attention coefficient 
α kð Þ

ij between each atom i and its neighbor atom j is calculated 
as follows: 

α kð Þ
ij ¼

exp LeakyReLU a!
T
½W kð Þ h

!
i jj W kð Þ h

!
j�

� �� �

P
l2Ni

exp LeakyReLU a!
T
½W kð Þ h

!
i jj W kð Þ h

!
l�

� �� � ;

(7) 

where W kð Þ is the weight matrix shared with the above, the 
purpose is to enhance the features of vertices, a a!

T 
is the 

weight vector that can be learned.
Our model is based on a three-layer GAT: each atom can 

see its three-hop neighbors, and atomic information can be 
transferred between drugs. After the last layer of GAT, we 
add a global pooling layer to aggregate the learned atomic 
features to obtain the embedding z!AB of the drug 
combination.

Extracting cell line features based on multi-layer percep
tion: We used a two-layer multi-layer perception (MLP) to 
construct embedding for the cell line as follows: 

z!l
cell ¼ ReLu Wl

cell z!l − 1
cell þbl

cell

� �

; (8) 

where Wcell and bcell are weight matrices that can be learned, 
l means in the l-layer. z!0

cell ¼Xcell is the expression profile of 
2087 genes. Finally, the embedding z!cell of the cell line 
is obtained.

Concatenating the embedding of drug combinations on cell 
lines: The embedding of drug combination on cell line z!ec 

can be obtained through the fully connected layer: 

z!ec ¼ ReLu Wec z!AB jj z!cell

� �
þbec

� �
; (9) 

where Wec and bec are weight matrices that can be learned.

2.2.3 View 2: learning the combination of drug embeddings 
on cell lines
Each drug’s embedding z!drug from Morgan fingerprint fea
ture was concatenated with the cell line embedding z!cell, and 
then inputted into MLP to obtain the embedding of one drug 
on cell line z!dc: 

z!dc ¼ ReLu Wdc z!cell jj z!drug

h i
þbdc

� �
: (10) 

Then we can get the combination of drug embedding on 
cell line z!ce: 

z!ce ¼ ReLu Wce z!A
dc jj z!B

dc

h i

þ bce

� �

: (11) 

2.2.4 Prediction net: predicting drug synergy based on 
dual-view
Through the above two networks, we can get the dual-view 
embedding about drug synergy. By contacting these two 
embeddings and inputting them into the three-layer MLP: 

z!l
¼ ReLu Wl z!l − 1

þ bl
� �

; (12) 

where l means in the l-layer. At the first layer, 
z!0
¼ ½ z!ec jj z!ce�, and the final embedding z!¼ z!3.

Through the embedding z! of drug synergy, we can get the 
final predicted value: 

out ¼ σ Wout z!þbout

� �
; (13) 

where σ is the softmax or linear activation function for the 
classification or regression task.

2.2.5 Global parameters
The architecture of JointSyn is determined by many hyper
parameters, including but not limited to loss function, activa
tion function, learning rate and regularization method. We 
used grid search to adjust the hyperparameters and per
formed ten times of 5-fold cross-validation to increase the ro
bustness. Detailed parameter settings are in Supplementary 
Table S2.

2.3 Method evaluation
We compared JointSyn with several state-of-the-art methods 
(DeepSynergy, AuDNNsynergy, DeepDDS, DTSyn, Hypergraph 
Synergy, Matchmaker, MMSyn, and XGBoost) by 5-fold cross 
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validation. Parameter selections of different compared methods 
were undergone according to the instructions of the original 
papers. In the regression task, we adopted Pearson Correlation 
Coefficient (PCC) and R square (R2) as the main evaluation met
ric, and we also reported other widely used performance metrics, 
including Mean Squared Error (MSE) and Root Mean Square 
Error (RMSE). In the classification task, we adopted Kappa and 
F1 as the main metrics, and we also reported other classic perfor
mance metrics, including Area under the ROC Curve (ROC 
AUC), Precision-Recall Curve (PR AUC), Balanced Accuracy 
(BACC), Precision, and Recall. We performed ten times 5-fold 
cross-validations randomly and reported the mean and 95% con
fidence intervals of the performance metrics.

To ensure the generalization ability of the model on unseen 
data, four data splitting strategies were used and compared: 
Random splitting that divided all triplets into five folds; 
PairOut splitting that randomly divided all drug combina
tions into five folds to ensure that the drug combinations in 
test set do not appear in the training set; CellOut splitting 
that randomly divided all cell lines into five folds to ensure 
that the cell lines in test set do not appear in the training set; 
DrugOut splitting that randomly divided all drugs into five 
folds to ensure that the drugs in test set do not appear in the 
training set.

3 Results
The goal of JointSyn is to more accurately and robustly esti
mate the personalized synergistic effects of drug combina
tions. Its schematic diagram is shown in Fig. 1A. Its core 
features are to get the global graph information on drug com
binations by joint representation, and to construct two views 
to capture the drug synergy-related features as shown in  
Fig. 1B. One view is the embedding of drug combination on 
cancer cell lines (view1: drugCombination-cell), and the other 
is the combination of two drugs’ embeddings on cancer cell 
lines (view2: drug1-cell & drug2-cell). In view1, molecular 
graphs of two drugs are firstly joined to construct a graph of 
the drug combination; next GAT is used to obtain a joint rep
resentation of the drug combinations; then the representation 
of the drug combination is concatenated the gene expression 
profiles of cell lines. The rationale of view1 is to better get the 
global graph information of drug combinations. In view2, 
each drug’s molecular fingerprint and cell line’s gene expres
sion profile are integrated through MLP to get the embedding 
of each drug on cell lines respectively, and then the embed
dings of two drugs were contacted to obtain the combination 
of drug embeddings on cell lines. Finally, JointSyn takes the 
embeddings from dual views to predict continuous or cate
gorical synergy scores by MLP. The model only using view1 
or view2 embedding and connecting MLP is named JointSyn- 
Graph or JointSyn-Fingerprint respectively.

We tested four joint methods for connecting drugs’ molecu
lar graphs: Super-Edge, All-Nodes, One-Super-Node, and 
Three-Super-Nodes (Fig. 1C, seeing methods for details). The 
Super-Edge strategy achieves the best performance on 
the O’Neil dataset (Supplementary Table S3). Therefore, we 
selected Super-Edge as the Joint Method in the follow
ing sections.

3.1 JointSyn improves drug synergy predictions
We first compared JointSyn with five state-of-the-art deep 
learning methods and one classic machine learning method 

on two tasks (regression and classification) using the O’Neil 
dataset. JointSyn achieves the best performance on all evalua
tion indicators for the regression task (Fig. 2A, 
Supplementary Table S4). JointSyn’s R2 is 0.78, which is 
8.9% higher than the DeepSynergy which is the first method 
using deep learning for predicting drug synergy, and 6.1% 
higher than the Matchmaker which is the best baseline 
method. And JointSyn’s PCC is 0.89, which is 5.3% higher 
than the DeepSynergy and 3.7% higher than the 
Matchmaker. When treating the drug synergy prediction as a 
classification task, JointSyn is still significantly better than 
other methods for Kappa and F1 scores, although the differ
ence of ROC-AUC among JointSyn, XGBoost, DeepDDS and 
MMSyn is not obvious (Fig. 2B). The similar performance 
improvement of JointSyn is also observed on another bench
mark dataset NCI-ALMANAC (Supplementary Fig. S1 and 
Supplementary Table S5). Overall, these results show the 
powerful ability of JointSyn to predict the drug synergy.

There are 583 drug combinations in the O’Neil dataset, 
and each drug combination was measured on multiple cell 
lines. We noted that there were large differences in the perfor
mance of JointSyn for different drug combinations, therefore 
we further explored the possible effect factors. When a drug 
combination is measured in more cell lines, JointSyn’s predic
tion is more related with actual synergy scores (Fig. 2C). 
When the standard deviation of the synergy scores for a drug 
combination in multiple cell lines is larger, the correlation be
tween real and predicted synergy scores is significantly higher 
(Fig. 2D). In other words, this means that if the synergy 
scores of a drug combination in multiple cell lines are signifi
cantly different, the synergy scores can be predicted 
more accurately.

3.2 Dual-view of JointSyn captures different aspects 
and achieve better performance
To inspect how well JointSyn generated the embeddings re
lated with drug combinations on cell lines, we used t-distrib
uted stochastic neighbor embedding (tSNE) to visualize the 
dual-view embeddings from the last layer of JointSyn 
(Fig. 3A). Similar plots were conducted using the single view 
of “drugCombination-cell” embedding in the JointSyn- 
Graph (Fig. 3B), and “drug1-cell & drug2-cell” embedding in 
the JointSyn-Fingerprint model (Fig. 3C). The synergistic and 
antagonistic triples can be well distinguished in the embed
ding space, and the dual-view seems better than the single 
view. These results indicate that dual-view representation of 
JointSyn is successful in extracting low-dimension embed
dings related with drug synergy.

We further inspected the contribution of two views by 
comparing them on each drug combination. The number of 
drug combinations with PCC >0.7 for JointSyn is 424, for 
JointSyn-Fingerprint is 363, and for JointSyn-Graph is 332 
(Fig. 3D). These numbers are larger than baseline methods. 
Next, we selected the best method (with highest PCC) for 
each drug combination and counted the number of drug com
binations that each method obtained the best performance. 
The JointSyn method achieves highest PCC for 314 drug 
combinations, while JointSyn-Fingerprint is 67 and JointSyn- 
Graph is 90 (Fig. 3E). Supplementary Figure S2 shows the 
top 20 drug combinations with the highest PCC by the 
JointSyn, JointSyn-Graph and JointSyn-Fingerprint respec
tively. The best performance on some drug combinations 
may be achieved when using only one view. More 
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importantly, dual-view achieves the best performance for 
most drug combinations due to the capture of complemen
tary aspects of embedding spaces.

3.3 JointSyn fine-tuning improves drug synergy 
predictions for unseen data
In the previous part, we evaluated the performance of 
JointSyn by randomized data splitting, but the real prediction 
tasks may involve unseen drug combinations, drugs, or cell 
lines. Therefore, we further evaluated JointSyn by three strat
ified data splitting scenarios in which the drug combinations, 
drugs, or cell lines used for prediction were not included in 
training dataset, named PairOut, DrugOut, and CellOut, 
respectively.

Figure 4A shows the performance of each method in four 
scenarios on the O’Neil dataset (Supplementary Table S6 for 
detailed results). Compared with randomized data splitting, 
the performance of all methods significantly decreased for 
stratified data splitting. DrugOut decreases the most, fol
lowed by CellOut and PairOut. For the PairOut scenario, 
models may still learn from other combinations that share a 
drug; for CellOut scenario, models may still learn from 

similar cell lines; however, DrugOut simulates the prediction 
of a completely new drug, the lack of information in the 
training set resulting in a significant performance decline. 
Compared with other methods, JointSyn still achieves the 
best performance in most metrics in the stratified scenarios. 
For an unseen drug combination, JointSyn can averagely 
achieve a F1 of 0.84 and a PCC of 0.86; for an unseen cell 
line, JointSyn can still averagely achieve a F1 of 0.75 and a 
PCC of 0.67. The similar performance improvement of 
JointSyn was observed when CSS values were used as the syn
ergy scores (Supplementary Table S7). JointSyn achieved ex
cellent performance whether considering LOEWE only or 
simultaneously LOEWE and CSS, indicating JointSyn an ef
fective tool for predicting drug combination efficacy 
(Supplementary Fig. S3).

Prediction of drug synergy for unseen data is very challeng
ing. To address this challenge, we used the fine-tuning 
method to improve the JointSyn’s performance by introduc
ing a small number of experimental measurements (Fig. 4B). 
For a new cell line in CellOut splitting scenario, k drug 
combinations on this cell line were gradually added into the 
training set (k-shorts). As the number of shots increased, PCC 
and R2 gradually increased and tended to be stable (Fig. 4C). 
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The performance metrics at 150-shots is close to random split
ting. This means for a given drug list, if 21% (150/703�21%) 
combinations are experimentally measured for a cell line, and 
the synergy of the remaining drug combinations can be well 
predicted. Similarly, k-shots fine-tuning promoted JointSyn’s 
performance in the PairOut scenario (Fig. 4D). For a drug 
combination not in the training set, when the synergy scores 
of this combination on 15% (5/34�15%) cell lines are 
added into the training set, JointSyn can well predict synergy 
on the remaining cell lines. Taken together, JointSyn with 
fine-tuning further improves its generalization ability 
for prediction.

3.4 JointSyn fine-tuning improves drug synergy 
predictions for independent datasets and provides 
quantitative suggestions for better 
experimental design
We further evaluated JointSyn for cross-dataset prediction 
using NCI-ALMANAC and O’Neil datasets. These 2 datasets 
only shared 14 drugs, 9 cell lines, and 221 triplets (drug1- 
drug2-cell line) (Fig. 5A). For the overlapped triplets, whose 
synergy scores were measured in both datasets, the correla
tion of two datasets is only 0.32 (Fig. 5B). Such low correla
tion may come from differences in experimental protocols 
between two laboratories such as the concentration range of 
drugs and the cell viability assays (Zhang et al. 2023). Taken 
the larger dataset NCI-ALMANAC (236190 triplets) as train
ing data and the O’Neil dataset (12 033 triplets) as 

independent testing data, the performance of JointSyn 
(R2¼0.064 and PCC¼ 0.14) and other baseline methods sig
nificantly dropped. Such low predictive performance indi
cates that direct application of the model to independent 
datasets is infeasible due to huge differences in experimental 
subjects and protocols.

The cross-dataset prediction is a common demand in real- 
world application scenarios and a very challenging task for 
computation modeling from limited training data, but previ
ous methods did not pay enough attention to this issue. 
Therefore, we quantitatively explored how much data were 
needed for reliable predictions when training JointSyn by a 
prior public dataset and fine-tuning by a small independent 
dataset and compared with PDSP (Fig. 5C). Figure 5D shows 
the performance of the model fine-tuned by the O’Neil data
set based on the model trained by NCI-ALMANAC. For a 
given drug list, when 28% (200/703� 28%) drug combina
tions for each cell line of the O’Neil dataset are added to fine- 
tuned JointSyn, synergy scores of the remaining triplets can 
be well predicted (R2¼0.75, PCC¼0.87). Similarly, when 
29% (10/34�29%) cell lines for each drug combination are 
added, JointSyn can well predict synergy scores on the 
remaining cell lines (R2¼0.73, PCC¼ 0.86). Additionally, 
we compared JointSyn with another transfering learning 
method PDSP (Kuru et al. 2024). Although PDSP’s perfor
mance also improves after fine-tuning, JointSyn still outper
forms PDSP when fine-tuned on the same data. This 
experiment proves that through fine-tuning with a small 
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number of experimental measurements from the external 
dataset, the decrease of model performance on cross-dataset 
prediction can be solved.

3.5 Application of JointSyn to investigate 
synergistic drug combinations of pan-cancers
To further demonstrate the utility of JointSyn in personalized 
drug synergy prediction and explore the patterns of drug syn
ergy among different tumors, we applied JointSyn trained 
with the O’Neil dataset to score 996 cell lines from seven tu
mor lineages of CCLE on 703 drug combinations. This gener
ated an estimated atlas of synergistic drug combinations for 
pan-cancer (Fig. 6A). Ward’s hierarchical clustering divided 
tumors into 4 clusters (C1–C4) and drug combinations into 5 
clusters (D1–D5) from the predicted drug synergy matrix. D1 
and D2 have no synergistic effects in almost all tumors, while 

other drug combination clusters show heterogeneous patterns 
of synergy scores among different tumors. Tumors in C1 are 
mainly composed of blood cancers and lymphomas, harbor
ing no synergistic drug combinations, which may reflect huge 
differences between hematolymphoid tumors and solid 
tumors; C3 is mainly composed of skin cancer; Other types 
of solid tumors are mixed in C2 and C4.

Lung cancer has the largest number of cell lines in CCLE 
dataset. Next, we took lung cancer as an example to illustrate 
the heterogeneity among cancer samples of the same lineage. 
The drug synergy matrix for all 703 drug combinations in 
188 lung cancer cell lines was illustrated in Supplementary 
Fig. S4A. We selected 108 drug combinations with a synergis
tic ratio >5% and drew a heatmap of synergy scores 
(Fig. 6B). Samples were divided into three clusters 
(Lung_C1�Lung_C3) based on the synergy scores of these 

Figure 4. Model performance on unseen drug combinations, cell lines, and drugs. (A) Performance comparison for the regression and classification tasks 
in four data splitting scenarios of the O’Neil dataset. Random means data was randomly splitted into training and test set. Three stratified data splitting 
PairOut, CellOut, DrugOut means drug combinations, drugs, or cell lines that were used for prediction were not included in training dataset. (B) For a new 
cell line (CellOut) or drug combination (PairOut), JointSyn uses few-shot finetuning to improve performance. (C) The improvement of JointSyn 
performance after adding experimental measurements from different numbers of drug combinations when the cell line is new. The dashed line is the 
JointSyn’s performance in random data splitting scenarios. (D) The improvement of JointSyn performance after adding experimental measurements from 
different numbers of cell lines when the drug combination is new.
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selected drug combinations. The two main types of lung can
cer, non-small cell lung cancer (NSCLC), and small cell lung 
cancer (SCLC), show obvious differences in the distribution 
of synergy scores. Lung_C1 is mainly composed of SCLC and 
has almost no synergistic drug combinations. Lung_C3 is 
mainly composed of NSCLC and many drug combinations 
have synergistic effects. This is consistent with many previous 
studies which mentioned SCLC is highly drug-resistant and 
has poor prognosis (Koinis et al. 2016, Schneider and 
Kalemkerian 2016). Some drug combinations have synergis
tic effects on specific NSCLC cell lines, therefore we further 
explored whether the differences of drug synergy were related 
to certain somatic mutations. EGFR is the frequently mu
tated driver gene in NSCLC and its inhibitor erlotinib is in 
our training dataset. Combinations of erlotinib with some 
other drugs are synergistic based on the predictions from 
JointSyn and associated with EGFR mutations. Taken 
“erlotinib and vorinostat,” “erlotinib and dactolisib,” 
“erlotinib and MK-2206” as examples, they have signifi
cantly high synergy scores in EGFR mutated cell lines than 
those without EGFR mutations, whether in NSCLC cell lines 
or in all cell lines (Fig. 6C, Supplementary Fig. S4B and C). 
Evidence related to these predicted drug synergies can be 
found in previous studies. Vorinostat can enhance the thera
peutic potential of erlotinib in lung cancer cells (Alqosaibi 
et al. 2022); the combination of MK-2206 and erlotinib can 
synergistically inhibit the cell proliferation of human cancer 
cell lines (Hirai et al. 2010); PI3K/Akt/mTOR signaling is the 
main mechanism of EGFR resistance, and dactolisib is a dual 
PI3K/mTOR inhibitor (Wu et al. 2019), which may explain 
the synergy effect of erlotinib and dactolisib. In summary, the 
predictions from JointSyn are mostly reliable and some are 
supported by existing experimental evidence.

4 Discussion
In this work, we have proposed a novel deep learning model, 
JointSyn to predict drug synergy from dual-view jointly learn
ing. JointSyn performs best compared to other methods on 
two benchmark datasets. The embedding from dual view has 
been proved to be significantly helpful in drug synergy predic
tion. More importantly, JointSyn utilizes few experimental 
measurements to fine-tune, improve its performance not only 
for the unseen subset within a dataset but also for indepen
dent datasets. Finally, an estimated atlas of synergistic drug 
combination for pan-cancer was generated by JointSyn and 
the differential patterns among tumors were discussed.

A common bottleneck of developing drug synergy predic
tion methods is the limited number of experimental measured 
synergy scores. A future direction is to incorporate large-scale 
unsupervised pre-training into the training process, so that 
the model can learn more drugs and cell lines even though 
these are unlabeled. JointSyn currently only uses the drug’s 
molecular graph, Morgan fingerprint and the expression pro
file of cell line to predict drug synergy. More prior informa
tion such as drug-target genes, drug-drug interactions, and 
drug-disturbed expression profiles may also be useful. 
Incorporation more information may more sufficiently model 
drugs and cell lines, even better capture the association be
tween drugs in the training set and novel drugs. In addition, 
drug dosage is important for improving the accuracy of 
cross-study transfer learning (Zhang et al. 2023, Tang et al. 
2024), but existing studies rarely involve drug dosage 

information. We consider using a new transfer learning 
method to improve JointSyn and incorporate drug dosage 
into the model to better solve the problem of cross-study 
drug synergy prediction. We will improve JointSyn from 
these perspectives in future. Overall, we believe that JointSyn 
is a valuable tool for pre-screening of synergistic drug 
combinations.
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