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The tumormicroenvironment (TME) plays a crucial role in orchestrating tumor cell behavior and cancer
progression. Recent advances in spatial profiling technologies have uncovered novel spatial
signatures, including univariate distribution patterns, bivariate spatial relationships, and higher-order
structures. These signatures have the potential to revolutionize tumor mechanism and treatment. In
this review, we summarize the current state of spatial signature research, highlighting computational
methods to uncover spatially relevant biological significance. We discuss the impact of these
advances on fundamental cancer biology and translational research, address current challenges and
future research directions.

The tumor microenvironment (TME) is a highly structured ecosystem
containing cancer cells surrounded by diverse non-malignant cell types,
collectively embedded in an altered, vascularized extracellular matrix
(ECM)1. Through intricate spatial interactions between multiple compo-
nents, the TME plays a pivotal role in shaping tumor progression, metas-
tasis, and responses to therapy.Whiledissociated single-cell techniqueshave
provided insights into the cellular composition of the TME2–6, identification
and quantification of cell populations is insufficient to decipher their
interactions within the tumor ecosystem due to the loss of spatial context
upon tissue disaggregation. Characterizing the spatial localization of cells
within or around the tumor, the spatial patterns of biomarker expression,
the interactionsbetweenneighboring cells, and the compositionof recurrent
cellular communities within the TME can achieve a more comprehensive
quantification of TME and provide essential information about tumor
formation7–12. This is particularly important for regions with different
degrees of tumor progression, such as the invasive tumor front13–18. Even
within a tumor, different subregions may exhibit different cellular compo-
sition and molecular functions, and it has been found in multiple cancers
that the spatial aggregation of specific cell types into different “niches”may
lead to intratumor heterogeneity and affect patient outcomes19. In parti-
cular, for immune cells, their spatial organization and infiltration patterns
are critical for understanding tissue behavior and response to immu-
notherapy. Immunophenotypes defined by the degree of immune cell
infiltration or derived markers can serve as predictors of tumor recurrence
and response to immunotherapy20,21. However, the spatial characterization
of TME is still an emerging field, and the diverse and complex “spatial
signatures” currently lack a clear definition and a systematic framework. In

this review, we summarize the spatial signatures at various scales in tumor
tissues, outline some spatial signatures that have been published in recent
years, as well as the computational methods and tools for obtaining spatial
signatures and the clinical significance of these spatial signatures. Finally, we
discuss the key unresolved issues in cancer spatial analysis and describe the
future prospects of related research.

Obtaining and preprocessing of spatial omics data
The essence of spatial proteomic, transcriptomic and genomic technology
lies in its aptitude for the simultaneous detection of molecular constituents
at exact spatial coordinates22. Predominant technological advances
encompass methodologies reliant on either imaging-based detection or
indirect interrogation through massively parallel sequencing11,12,22,23.

Spatial platforms for proteomics
In situ proteomics can be achieved through targeted approaches using
antibodies. Most techniques for multiplexed proteomics perform antibody
staining using experimental procedures that are similar to those developed
for microscopy24. Methods differ in the nature of the moieties that are
attached to the antibodies (such as fluorophores, enzymes, DNAoligos, and
metal isotopes) and detection modality (for example mass spectrometry,
spectroscopy, fluorescence, or chromogen deposition)7,24,25.

Cyclic fluorescence imaging, based on antibody-conjugated barcodes
with fluorescent hybridization nucleotides, is more established given the
wide availability of reagents and imaging systems24. For example, CO-
Detection by indexing (CODEX)26 allows the characterization ofmore than
100 antibodies in a panel27. For imaging mass cytometry (IMC)28 and
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multiplexed ion beam imaging (MIBI)29, each antibody is bound to a dif-
ferent metal and detected by mass spectrometry (MS) imaging. The two
methods differ in how mass measurements are performed and in their
resolution: 1 µm for IMC and 300 nm for MIBI10. Because of detection of
antibodies conjugated to isotopically pure lanthanide metals, they allow the
routine quantification of about 50 different species with a very high signal-
to-noise ratio (SNR)10. In addition, MS imaging methods30 can also be used
to characterize the spatial metabolome of small biomolecules, but cannot
easily be combined with other spatial genome, transcriptome or proteome
readouts on the same section due to specific sample preparations and
limitations5.

Spatial platforms for transcriptomics
Combinatorial fluorescence in situ hybridization (FISH) followed by single-
molecule imaging allows counting of mRNA molecules present in a given
area of a tissue10. Close relatives of cyclic-FISH protocols are in situ
sequencing (ISS) technologies. Targeted ISS can accurately identify specific
RNA molecules, while untargeted ISS does not require the predesign of
probe panels and can measure splicing isoforms, mutations, and the whole
transcriptome10,22,31.

Several platforms that recently became commercially available for
automated imaging-based spatial transcriptome profiling of tissue sections
at single-cell resolution. These include the NanoString CosMx platform,
which is based on single-molecule fluorescence in situ hybridization
(smFISH)32,33, theVizgenMERSCOPE platform, which utilizesmultiplexed
error-robust fluorescence in situ hybridization (MERFISH)34,35 and 10X
Genomics Xenium platforms36. These technologies enable imaging-based
co-profiling of a few to tens of proteins, making these technologies more
accessible5.

Some spatial barcoding techniques use probes fixed on a slide to easily
capture the entire transcriptome of a large number of samples27. The
inoculation distribution of probes affects the spatial resolution of the
technology7, ranging from 100 μm for Spatial transcriptomics37, 55 μm for
10× Visium33, 10 μm for Slide-seq38 and Slide-seqV239, 2 μm for HDST40 to
500 nm for PIXEL-seq41, Seq-Scope42 and Stereo-seq43. Unlike barcoded
solid-phase RNA capture, DBiT-seq44 uses microfluidics-based barcoding
and patterned ligation to efficiently capture a whole transcriptome and tens
of proteins with a spatial resolution of 10 µm5,27. A recent new technology,
Slide-tags45, isolates single cells while retaining spatial barcode information
by DNA-barcoded beads with known positions, rather than capture-based
strategies. This means that existing single-cell methods can be directly used
in Slide-tags to perform multimodal analysis with spatial positions.

Spatial platforms for genomics
Many of the approaches developed for multiplex in situ hybridization have
been co-opted and extended for the simultaneous identification of a large
number of chromosomal loci9. Both MERFISH and seqFISH have been
adapted to distinguish genomic loci at a scale of approximately 1,000 loci,
allowing the extensive characterization of chromatin across a wide range of
length scales from sub-domain structures to trans-chromosomal
interactions46,47. In parallel, ISS technologies have been introduced for
mapping and tracing chromosomal organization9. For example,
OligoFISSEQ48 hybridizes DNA FISH probes with barcode regions to dif-
ferent chromosomal loci, and the barcodes are subsequently identified by
various ISS chemistries or by hybridization or readout of the probes.
Another untargeted in situ genomic sequencing approach is able to label
random genomic loci in single cells49. In addition, DBiT-seq mentioned
above has also been further extended to epigenomic analysis of chromatin
accessibility and histone modifications50,51.

Pre-processing of raw data
Since imaging‐based and sequencing‐based methods generate raw data in
different types, the workflows need to be discussed separately.

The output of imaging-based spatial technologies (such asfluorescence
imaging or MS imaging) is a multidimensional image depicting the spatial

expression pattern of each protein or RNA transcript. As a result, these
present huge datasets, often spanning tens of thousands of images7. These
error-prone raw data first need to undergo quality control and data cor-
rection, such as removing noise, determining the threshold for point
detection, and signal registration between imaging rounds52,53. Additionally,
the image-based data has pixel information and must be segmented into
individual cells, a process that can be achieved using various established
methods54–56. The subsequent accurate annotation of cell types is also one of
the main challenges, especially at the granular level. For CODEX data,
different datanormalization and clustering strategies have been compared57,
and novel computational pipelines have been developed for annotation of
cell subtypes58. In summary, given the different parameterizations of each
platform and experimental setup, it is more practical for researchers to start
their analyses using the pre-processed data generated by commercial or pre-
optimized protocols52.

The raw data generated by sequencing-based spatial technologies can
be affected by various sources of noise and often suffer from signal loss52,59.
In the preprocessing stage, more attention needs to be paid to noise
handling, data cleaning, and normalization procedures52. This can be
achieved by considering important quality metrics such as mRNA capture
sensitivity and spatial precision of mRNA detection53. In addition, inter-
polation techniques can be used to address missing gene expression
values60–63. Performing cell type-specific analysis becomes difficult when the
spatial resolution is coarser than the single-cell level. To overcome this
problem, researchers can use dissociated single-cell RNA data to estimate
the relative proportions of different cell types within each spatial location
through deconvolution algorithms64.

Once the raw spatial data has been preprocessed and transformed into
cell/spot bymoleculematriceswith attached spatial coordinate information,
a series of meaningful spatial features can be revealed.

Multi-scale spatial signatures
Applying spatial statistical analysis to the preprocessed data can further
mine spatial characteristics at the molecular and cellular levels.When these
computationally defined characteristics exhibit specific spatial distribution,
cellular or molecular composition, and roles in executing biological func-
tions, they can be referred to as “Spatial Signatures”55.

By reviewing related papers in recent years, we have conceptualized
spatial signatures into three scales according to the feature complexity:
univariate (Fig. 1A (a–d)), bivariate (Fig. 1A (e–h)), and higher-order (Fig.
1A (i) and (j)). In cancer biology, spatial signatures at each scale enhance our
understanding in distinct yet complementary ways (Table 1).

Univariate distribution patterns
Univariate spatial analysis focuses on the spatial distribution of a single
variable without considering relationships with other variables. At the
molecular level, this involves expression preferences in different tissue
compartments (Fig. 1A (a)) and the continuous expression gradients of a
single gene or protein (Fig. 1A (b)). From the cellular perspective, univariate
analysis can study the spatial localization of specific cell phenotypes (Fig. 1A
(c)) or the spatial patterns of cell morphological characteristics computed
from pathological images (Fig. 1A (d)).

First, at the molecular level, one of the most straightforward ways to
study the spatial expression preference of a single gene or protein is to utilize
spatial sampling techniques ormanually delineate distinct spatial regions for
comparative analysis (Fig. 1A (a)). For example, the stromal regions of dif-
ferent locations were dissected using laser capture microdissection (LCM)
andMSwas performed, revealing someproteins related to ECMremodeling,
such as COL11A1 and POSTN, were significantly upregulated in tumor
stroma18. Notably, the biological phenomena of the tumor-normal interface
and transition zone have been increasingly valued, as they elucidate the
stepwise progression of tumorigenesis13,15–18,65. A typical example is the use of
the GeoMx platform to conduct spatial transcriptomics across distinct his-
tological regions in early-stage colorectal cancer (CRC) patients15. Gene
signatures such as innate immune sensing are already upregulated in early
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areas of CRC transformation. Infiltration of myeloid cells and immuno-
suppressivemacrophages increases fromnormal tissue todysplasia toCRC15.

With the advancement of spatial experimental technology, researchers
no longer only focus on the differential expression at specific compartment,
but also focus on the continuous gradient (Fig. 1A (b)). Human tissues

present organized and functional structural units. Taking the liver lobule as
an example, where oxygen, nutrients and hormones exhibit variable gra-
dients along the portal-central axis, resulting in nonuniform expression of
metabolic genes throughout the lobule. This metabolic difference is mani-
fested at multiple levels, such as RNA, protein, and methylation66.
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Fig. 1 | Spatial signatures in tumor biology. AUnivariate (top), bivariate (middle)
and higher-order (bottom) spatial signatures in tumor biology. Left, molecular level
spatial distribution (a, b) or spatial relationship (e, f, i). Right, cellular level spatial

distribution (c, d) or spatial relationship (g, h, j). B Examples of cellular niches
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During tumor progression, tissue function is disrupted and displays
specific molecular gradients. For instance, in liver cancer, hypoxia-
associated signals suddenly decrease from the peritumoral area to the
tumor edge, but increase significantly from the tumor edge to the tumor
core67. Additionally, optical metabolic imaging of ductal carcinoma reveals
spatial gradients in cellular metabolism, which are associated with local
differences in oxygenation and nutrient availability, reflecting themetabolic
heterogeneity of tumor cells68. More advanced computational methods
(detailedmethods see below) have enabled the detection of spatially variable
genes (SVGs) with expression gradients, an important step toward cap-
turing biologically meaningful signals. For instance, in glioblastoma, spatial
transcriptomic analysis reveals decreasing gradients of hypoxia response
genes (e.g. VEGFA) and glycolytic metabolism genes (e.g. SLC2A1) with
increasing distance from necrotic regions, while genes associated with
oxygen-dependent pathways and T cell receptor signaling are spatially
excluded from necrotic areas69.

Second, at the cellular level, the spatial localization of cell subtypes is
often not uniform (Fig. 1A (c)). Not only aremalignant cell subtypes enrich
in delineated spatial compartments14, but other non-parenchymal cells such
as cancer-associated fibroblasts (CAFs) and T cells also have spatial dis-
tribution preferences. For example, myofibroblastic CAFs (mCAFs) are
often enriched in invasive cancer regions or act as immune barriers at the
tumor border, whereas, immunomodulatoryCAFs (iCAFs) are dispersed in
areas of invasive cancer, stroma, and tumor-infiltrating lymphocyte (TIL)
accumulation70–72. The spatial distribution of T cells and overall immune
infiltration is also a key feature. Pan-cancer analysis reveals four distinct
spatial patterns of TILs: active diffuse, active zonal, inactive multifocal, and
inactive lesions73. The localization of CD8+ T cells within TME has been
shown to vary based on subtypes. In Epstein-Barr virus-positive gastro-
esophageal adenocarcinoma (GEA), CD8+T cells are predominantly found
at the tumor center, while in chromosomally unstableGEA, these T cells are
more abundant at the infiltrative edge74.

At the cellular level,morphological features such as nuclear orientation
and chromatin intensity also show spatial heterogeneity (Fig. 1A (d))75,76.
These features aremainly revealed by calculating image features of different
spatial patches in whole-slide image, such as the diversity of cancer cell
morphology in ovarian cancer77 and the disorder of collagen fiber orienta-
tion inbreast cancer78.And the areaswith distinctivemorphological features
usually mean the convergence of several potential molecular gradients and
unique clinical risks77,78.

Bivariate spatial relationships
It is now recognized that cells and genes operate within complex commu-
nications. Bivariate relationships capture how two different biological ele-
ments relate to each other spatially, such as cell-cell avoidance or co-
localization (Fig. 1A (g, h)), co-expression of ligand-receptor (LR) pairs (Fig.
1A (e)) and spatial gradient correlation (Fig. 1A (f)).

In situ mapping of cell subtypes highlights the regularities of spatial
relationships between them. First, spatial avoidance usually occurs between
cell subtypes with different functions. Taking two common CAF subtypes,
iCAFs and mCAFs, as examples, iCAFs highly express chemokines and
show the highest activity mainly in immune-related functions, while
mCAFs highly express ECM remodeling genes and play a role in

angiogenesis and ECM remodeling71,72,79,80. A pan-cancer spatial study
observes a spatially exclusive phenomenon between the high-density areas
of iCAFs andmCAFs, suggesting that the activation state of CAFs is related
to their location within the TME81. The composition of immune cells shows
differences in areas dominated with different CAF subtypes, such as less
neutrophils and regulatory T cells (Tregs) around iCAFs, less Tregs near
mCAFs, and less B cells near proliferative CAFs (pCAFs)81. While spatial
colocalization often indicates potential interactions that unite tissue func-
tions. For example, there is the colocalization of fibroblasts and SPP1+

macrophages at the tumor boundary in CRC and hepatocellular carcinoma
(HCC) to promote the formation of the immune-excluded structure and
limit immune infiltration, and such patients derive less therapeutic benefit
from an anti-PD-L1 therapy82–84. When comparing the proportion of cells
between CAF-proximal and CAF-distal cells, there is a higher density of
pericytes near CAFs, which is one of the important sources of CAF
formation81. In addition, endothelial cells exhibit an increased abundance in
proximity to iCAFs andmCAFs, suggesting the angiogenic effect ofmCAFs
and the potential transformational relationship between iCAFs and
mCAFs81.

The spatial colocalization of cells within TME provides the physical
conditions for potential cell-cell interactions (CCIs). However, the co-
expression of genes in specific spatial locations, particularly receptor-ligand
pairs, can further increase the accuracy of inferring potential intercellular
communication in spatially proximal locations59. The 10X Visium spatial
transcriptomics study reveals an enrichment of ligands on immunor-
egulatory iCAFs and receptors on spatially proximal T-cells, including
chemokines (CXCL12/CXCL14-CXCR4 and CXCL10-CXCR3), comple-
ment pathway, transforming growth factor beta (TGFB1/TGFB3-TGFBR2)
and lymphocyte inhibitory/activation molecules (LTB-LTBR, TNFSF14-
LTBR and LTB-CD40, VTCN1/B7H4-BTLA)72. By integrating signaling
predictions with cellular proximity, these data highlight relevant candidates
for regulation of immune cells by iCAFs72. At the tumor leading edge of
cutaneous squamous cell carcinoma (CSCC), spatial colocalization of LR
pairs from stroma cells and tumor-specific keratinocyte are observed,
highlighting the pathway associated with epithelial–mesenchymal transi-
tion (EMT) and epithelial tumor invasion85.

In addition, bivariate spatial relationships also include the inter-
relationships between distribution patterns of different modalities. An
important direction is using tissue H&E pathology images to explore the
relationship between disease-related histological features and molecular
states. For example, by combining high-plex cyclic immunofluorescence
(CyCIF) with H&E images of patients with advanced CRC, researchers
found that some certain recurrent transitions in tumor morphology were
negatively correlated with gradients in the expression of oncogenes and
epigenetic regulators, such as the morphological gradient of normal
glandular transition and the spatial expression of E-cadherin or PCNA; the
morphological gradient of mucus-to-solid transition and the expression of
cytokeratin 20/18;while the gradients of epigeneticmarkersH3K27me3and
H3K27ac are consistent with the glandular-to-solid histological transition86.
In addition, metabolic imaging is often combined with spatial proteomics
imaging data to provide metabolic information of specific cell types87,88.
Spatially weighted correlation analysis of the integrated spatially resolved
transcriptomic-metabolomic dataset allows establishing the relationship

Table 1 | Multi-scale spatial signatures

Scale Molecular Level Cellular level

Type Reference Type Reference

Univariate distribution patterns (a) Position preference 13,15–18,65 (c) Spatial location 14,70–74

(b) Spatial expression gradient 67–69,115,116 (d) Morphological disorder 75–78

Bivariate spatial relationships (e) Co-expression/ Interaction 72,85 (g) Spatial avoidance 81

(f) Cross-modal association 86–90 (h) Spatial colocalization 81–84

Higher-order structures (i) Gene module 91,92 (j) Cell community/niche 85,93,98,99,102,104–110
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betweenmetabolites andRNA89,90. For example, creatinemetabolic pathway
is a hallmark of infiltration of tumor-associated myeloid cells in
glioblastoma89. Untargeted metabolomic and spatial transcriptomic ana-
lyses of serial sections reveals a closely spatial correlation between creatine
and the expressionof creatinemetabolic enzymeglycine amidinotransferase
(GATM) and radial glia gene signatures, which is associated with glioma
stem cell phenotypes and migration89.

Higher-order structures
Moving beyond the characterization of pairwise relationship, multiple
variables form a higher-order organizational structure, which can be con-
sidered as multiple genemodules with similar spatial expression patterns at
the molecular level (Fig. 1A (i))91,92. And the spatially continuous regions
represented by these genes are organized into “cell community”, “niche” or
“spatial domain” at the cellular level (Fig. 1A (j)). Someniches are associated
withhistologically identifiable anatomical or pathological structures, such as
vessel and tertiary lymph structures (TLS; Fig. 1B); somearenewly identified
aggregates of cells or molecules, such as proliferation niches and immune
niches93–95.

A classic example is TLS, which is the prognostic index for many
cancers96. TLS is organized aggregates of immune cells that formpostnatally
innonlymphoid tissues andare characterizedby an inner regionofCD20+B
cells surrounded by CD3+ T cells, similar to lymphoid follicles in secondary
lymphoid organs (Fig. 1B). Although the specific composition of TLSs may
vary, within the T cell compartment, CD4+ T follicular helper cells often
represent the dominant subset, but CD8+ cytotoxic T cells, CD4+ T helper
1 cells, and Tregs can also be present93. TLSs are also populated by distinct
dendritic cell (DC) populations, such as CD21+ follicular DCs, or CD83+

mature DCs, which predominantly localize in the T cell zone93. The follicles
can further contain scattered CD68+ macrophages93.

The angiogenic niche is identified surrounding blood vessels and is
usually rich in endothelial cells and fibroblasts (Fig. 1B). The vascular
endothelial growth factor (VEGF) and platelet-derived growth factor
(PDGF) secretedby fibroblasts can promote the proliferation andmigration
of endothelial cells, and also provide a scaffold for endothelial cells to pro-
mote angiogenesis97. In patients with lung cancer brain metastases, in
addition to endothelial cells and fibroblasts, it is also composed of pericytes
and immune cells including microglia98. There are also specific tumor cell
subpopulations in angiogenic niche, such as tumor-specific keratinocyte
identified in CSCC85 and pre-EMT neural crest stem cells in melanoma99.

Perineural invasion (PNI) is the phenomenon of spatial proximity
between cancer cells and nerves and is defined as “tumor in close proximity
to nerve and involving at least 33% of its circumference” or “tumor cells
within any of the three layers of the nerve sheath”100 (Fig. 1B). PNI leads to
perineurial damage, inducing cancer-related pain. Some cytokines secreted
by cancer cells can drive nerve reprogramming and regeneration101. Nerves
secrete neuroactive molecules that act on cancer cells, lymphocytes, and
macrophages to promote tumor proliferation, invasion, angiogenesis, and
inflammation102. These inflammatory cytokines and cellular components
form a unique cellular and biochemical microenvironment around the
nerves, named perineurial niche102. PNI is the most efficient interaction
between cancer cells and nerves, which was considered as a potential
pathway for cancer cells to spread andmetastasize, suchas blood vessels and
lymphatic vessels101,103. Thus, it has been reported in multiple aggressive
cancers, suchas head andneck cancers, prostate cancers, pancreatic cancers,
CRCs, and cholangiocarcinoma102.

The existence of other specialized niches has been revealed, repre-
senting novel cellular assemblies or distinctive molecular characteristics.
One example is theproliferative cluster observed inCODEXdata of gliomas,
which is enriched for proliferating oligodendrocyte precursor cell-like and
oligodendrocyte-like cells, surrounded by more differentiated, non-
proliferating astrocyte-like cells104. In pancreatic ductal adenocarcinoma
(PDAC), ductal regions isolated using LCM are defined as three major
morphological and functional ductal subtypes: glandular, transitional, and
poorly differentiated variants, which coexist in varying proportions in all

samples105. A quiescent cancer cell niche exists in primary triple-negative
breast cancer (TNBC), in which cancer cells activate HIF1a and are sur-
rounded by unfit DCs, suppressive fibroblasts, fewer T cell infiltration, and
more exhaustedTcells106.Another is afibroticniche composedoffibroblasts
at the tumor leading edge that prevents immune cell infiltration85,107. In the
10X Visium study, different transcript enrichments within the same spot
defined this microenvironment85,107. The single-cell resolution platforms
such as IMC or the GeoMx DSP allow direct topological analysis of cell
subtypes85,107. A typical example is the fibrotic niche in brain metastases,
which is rich in neutrophils, M2 macrophages, immature microglia, and
reactive astrocytes, and is immunosuppressive98.

Niches enriched in specific immune cell populations have also been
found inmany cancers bymethods such as clustering of neighbor windows
or graph neural networks (GNNs) (Detailed methods are described below).
For example, there is a high correlation between CD8+ T cells, Tregs,
macrophages, and CD4+ T cells in CSCC85; There are multiple cell neigh-
borhoods (CNs) dominated by M1-like monocyte-derived macrophages
(MDMs) in glioblastoma, which may include neutrophils and M1-like
microglia108; There are 12 recurrent districts in TNBC, of which D3 and D4
were dominated by lymphocytes109. D3 contains CD4+ T (39%), CD8+ T
(41%), and others (20%), andD4 contains B cells (54%) and others (46%)109.
Some immune niches are composed by suppressed or dysfunctional
immune cells. For example, the pre-metastatic niche is infiltrated by
inflammatory neutrophils andmonocytes, followed by the accumulation of
suppressive macrophages with the emergence of breast cancer lung
metastases110. In lung cancer brain metastasis, immunosuppressive niche is
characterized with reduced antigen presentation and B/T cell function,
increased neutrophils and M2 macrophages, immature microglia, and
reactive astrocytes98.

Computational methods for spatial signatures
A variety of computational approaches have been developed to derive
meaningful spatial signatures from multidimensional spatial data. As
summarized in Table 2, key methodological categories include spatial sta-
tistical methods, graph-based methods and machine learning techniques.
The remainder of this section will focus on representative methods used to
resolve spatial signatures of different categories.

Univariate distribution patterns
The analysis of univariate spatial distributions often involves defining
regions of interest (ROIs) or spatial domains based on pathological features
or segmentation methods. Then, differential distribution patterns are
obtained by directly comparing these predetermined regions. For con-
tinuous variables, such as gene expression values, the t-test orWilcoxon test
are commonly used to determine whether there are statistically significant
differences between regions. For example, the expression of genes related to
smooth muscle contraction and ECM organization was found to be higher
in the tumor interface area, as predefined by the pathologist, compared to
other locations18. For count data, such as cell numbers, the chi-square test or
Fisher’s exact test are more appropriate. And they have been used to
determine whether macrophages are significantly enriched in the tumor/
interface region13 and whether fibroblast subtypes are significantly enriched
in the tumor/interface region18. More complex comparisons involving
dependent data can be addressed using linear mixed models, which treat
individual variation or spatial autocorrelation effects as random effects111.
For instance, in comparing RNA profiles in different ROIs measured by
NanoString GeoMx DSP, the researchers included sample ID as a random
effect, while treatment status and sex as fixed effect covariates. This
approach allows them to identify that the neural-like progenitor and
neuroendocrine-like malignant programs are enriched in ROIs from
patients with specific treatments111.

Classical statisticalmetrics such asMoran’s I112,Geary’sC112, andGetis-
Ord Gi113 are initially used to measure spatial autocorrelation between
variates and locations. These three metrics capture different aspects of the
spatial dependence, and the statistical properties of these indices also vary.
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Moran’s I considers themeanof the overall data and the standardized spatial
weightmatrix, allowing it to identifymore complex spatial patterns, though
it is influenced by sample size112. In contrast, Geary’s C focuses on the
differences between adjacent observations; therefore, even if the overall
observation changes, as long as the relative differences between adjacent
observation remain constant, its value will not be significantly affected112.
The advantage of the Getis-Ord Gi index is that it can distinguish between
“hot spots” and “cold spots” where adjacent values are equally high and
equally low, respectively. However, it is not as effective as the other two
indices in identifying negative spatial autocorrelation. The above global
indices are primarily intended to provide an overall assessment of spatial
autocorrelation across the entire tissue area, but the conclusions may be
unreliable when spatial processes exhibit heterogeneity. To address it, local
spatial autocorrelation statistics are introduced, such as local Moran’s I112,
localGeary’s C112, and localGetis-OrdGi113. These local indices calculate the
autocorrelation value for each spatial location, enabling the visualization of
spatial patterns through techniques like saliency maps. This allows for a
more nuanced understanding of spatial heterogeneity, such as identifying
local clusters, calculating the contribution of individual spatial units to
global autocorrelation, and detecting spatial outliers. Additionally, Ripley’s
functions (including the F, L, and G functions), provide insights into the
density and clustering characteristics of spatial point patterns across dif-
ferent spatial scales114. These metrics complement the autocorrelation
analyses by offering alternative perspectives on the spatial heterogeneity
within the field.

More sophisticated methods have been developed to detects SVGs by
considering the distribution of spatial transcriptomic data. Trendsceek115

uses a marker point process and permutation tests, and while this non-
parametric approach is flexible, it can be computationally expensive for
large datasets. In contrast, SpatialDE116 takes a more parametric approach,
modeling gene expression as a multivariate normal distribution. This
improves computational efficiency, but is less robust to mean-variance
dependence observed in spatial data. The reproducibility of the results is
affected after the data is downsampled117. To address this, SPARK118 directly
models the raw count data using an overdispersedPoisson distribution, and
the optimized SPARK-X119 avoids assumptions about count distribution

and instead uses nonparametric covariance tests to improve algorithm
stability and applicability to a variety of spatial transcriptomic techniques.
This is particularly beneficial for large, sparse datasets. Users should also be
aware that many of these methods, such as those integrated in the Giotto
toolbox, rely on the creation of spatial grids or neighborhood networks,
which are sensitive to the variability among datasets and sparsity of the
spot117. Recently, STAMarker120 took a novel approach, using a graph
attention autoencoder to capture interdependencies between genes and
identify SVGs through classifier-based spatial domain predictions. While
this can provide more nuanced insights, the cost of reduced computational
efficiency needs to be considered.

It is worth noting that different SVG detection methods can produce
very different results even when applied to the same dataset117,121. Users
should carefully evaluate the underlying assumptions and consider their
specific data characteristics when choosing the most appropriate method.
And try to follow the recommended data preprocessing process for gene
filtering, normalization and other operations117,121. In addition, current SVG
detection tools tend to favor highly expressed genes, and future method
development will need to address this potential bias117,121.

Bivariate spatial relationships
Cell-cell colocalization. To uncover the spatial relationships between
cell types within complex tissue environments, a common approach is
examining cell-cell connections through permutation testing.
Permutation-based approaches, exemplified by tools such as histoCAT,
identify non-random colocalization patterns by comparing observed
data to a null distribution122. Cell-cell connections can be defined simply
based on neighborhood radius or can incorporate more complex spatial
relationships using techniques such as Delaunay triangulation, as
incorporated in some of the computational toolboxes Giotto123 and
Squidpy114.

To assess the infiltration of cell types, the G-cross function calculates
the spatial distance distribution between populations, and uses the area
under the curve (AUC) to represent the infiltration level of a specific cell type
in a given spatial context124. Similar, more detailed colocalization analysis
can be performed using SPIAT125, which combines a comprehensive suite of

Table 2 | Computational methods for uncovering spatial signatures

Type Aim Methods Toolkit

Univariate Spatially variable genes Marked point processes Trendsceek (R)115

Spatially variable genes Gaussian process regression SpatialDE (R)116

Distribution patterns of cell/ gene Spatial statistics Squidpy114

Spatially variable genes Generalized linear spatial model SPARK (R)118; SPARK-X(R)119

Spatially variable genes Graph-based artificial intelligence STAMarker120

Spatially variable genes Others (workflow) Giotto123

Bivariate Cell co-localization or exclusion Permutation test for connection Squidpy114; histoCAT (MATLAB)120; Giotto (R)123

Cell distribution relationships Spatial statistics G-cross (MATLAB)124; SPIAT (R)125

Spatial co-expression Correlation test Giotto (R)123; SPATA (R)128

Spatial co-expression Graph convolutional networks GCNG129

Spatial-constrained cellular
interaction

Spatial statistics with
permutation test

Giotto (R)123; SpaTalk (R)131; stLearn132; SOAPy133

Spatial-constrained cellular
interaction

Spatial statistics SpatialDM134

Spatial-constrained cellular
interaction

Collective optimal transport COMMOT135

De novo cellular interaction Variational graph autoencoder DeepLinc136; Spacia137

Higher-order Spatial domain Random field models Giotto (R)123; smfishHmrf (R)141; BayesSpace(R)142; BASS (R)143

Spatial domain Graph-based artificial intelligence SpaGCN144; SpaceFlow145; STAGATE146; NCEM147; CytoCommunity (R)148;
SPACE-GM149; CellCharter150

Spatial domain Spatial statistics ClusterMap151; MULTILAYER152; UTAG153; lisaClust (R)154
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10 complementary metrics, spanning proximity-based measures, normal-
ized mixing score, and Ripley’s functions. This multivariate approach
enables the robust characterization of diverse spatial patterns, such as the
identification of immune cell “rings” surrounding tumor clusters or the
quantification of immune cell infiltration levels.

Gene spatial co-expression. After extracting the data from various
spatial locations, the Pearson correlation coefficient can be calculated to
assess the co-expression relationships66,126,127. Spatial smoothing and
hierarchical clustering can be incorporated in this analysis, such as the
method in Giotto123, which can discover functional genemodules beyond
pairwise relationships. Meanwhile, Bayesian-based methods like
SPATA128 can also characterize the spatial overlap between gene
expression. However, if one wishes to infer the causal relationship
between gene pairs, a supervised model such as GCNG129 is required,
which utilizes known ligand-receptor interactions as training data.

Cellular communication in the spatial context. Previously, CCIs were
often inferred by ligand-receptor expressions from dissociated single-cell
sequencing data, but now it is more important to understand CCI in a
spatial context. The diversification of methods has been introduced130. In
general, most CCI inferences in a spatial context focus on the co-
expression of ligands and receptors within a specific spatial range, usually
combined with distance constraints or weights. Tools such as Giotto123

and SpaTalk131 require prior annotation of cell types, where SpaTalk131

further considers ligand-receptor-target co-expression. Tools such as
stLearn132 and SOAPy133 do not require cell type annotation and provide
CCI results at the single-cell or spot level by calculating non-directional
ligand-receptor scores based on neighborhood expression. However, the
permutation tests used by these tools are computationally expensive. To
address this problem, SpatialDM134 introduces an analytical derivation of
the null distribution, making it highly scalable to analyzemillions of cells.
Some recent methods have updated the biological assumptions, such as
COMMOT135, which further considers the competition between different
ligand and receptor and implements it through collective optimal
transport. Notably, DeepLinc136 and Spacia137 are new methods that do
not rely on predefined ligand-receptor databases, but directly learn latent
representations of cell-cell interactions from spatial data. This may be
particularly useful for imperfect or incomplete spatial transcriptomics
datasets.

Most spatial colocalization and CCI tools typically require a class label
for each node, which can be difficult for techniques that do not have single-
cell resolution. The accuracy of cell segmentation and expression quantifi-
cation in the spatial data will greatly affect the SNR and performance of the
CCI detection method.

Higher-order structures
Advances in spatial omics have enabled the simultaneously detection of the
expression of multiple molecules in space, therefore more complex tissue
patterns or regions can be identified (i.e., “spatial domains”). Although
traditional clustering methods (such as Louvain and Leiden in ScanPy138)
can effectively distinguish differences between cell types, these methods
ignore spatial continuity, and considering neighbors to obtain continuous
spatial domains can better reflect the true structure. In general, common
methods for identifying spatial domains canbe divided into 1)Randomfield
models, 2) Deep learning methods primarily based on GNNs, and 3) Other
methods139,140. Below we introduce these representative methods
respectively.

Random field models. One prominent example is the hidden Markov
random field (HMRF) model, which is applied in tools such as Giotto123

and smfishHmrf 141. HMRF converts the spatial domain identification
problem into a conditional probability distribution estimation task for
the hidden spatial domain labels. Building upon this framework,
BayesSpace142 employs a full Bayesian statistical approach and

incorporates a low-dimensional representation of the gene expression
matrix to model the spatial clustering. By introducing a Potts Markov
random field as a spatial prior, BayesSpace encourages neighboring
locations to belong to the same spatial domain cluster142. Similarly,
BASS143 also utilizes a Potts model, but with the addition of an inter-
mediate layer to explicitly model the cell type composition within each
spatial domain, allowing BASS to define spatial domains as regions with
unique cell type signatures. In addition, BASS further enables the inte-
grative analysis of spatial transcriptome datameasured onmultiple tissue
sections of the same anatomical region, leveraging key biological infor-
mation across tissue sections to improve spatial domain identification.

Deep learning methods (primarily based on GNNs). GNNs enable
modeling of spatial dependencies in biological data, and the key differ-
ence between these methods is how way they learn low-dimensional
latent embeddings that capture the underlying spatial structure.
SpaGCN144 and SpaceFlow145 provide the option to incorporate histolo-
gical information (e.g., H&E images) when integrating gene expression
data and spatial coordinates. However, users should be aware that adding
H&E data does not always improve model performance and may even
introduce noise into the analysis139. STAGATE146 employs an attention
mechanism in the intermediate layer between the encoder and decoder,
which has been shown to perform better for spatial transcriptomics data
with cellular or subcellular resolution146. The learning task of NCEM147 is
to reconstruct the cell expressionmatrix by taking into account the effects
of niche composition so that cell-cell dependencies can be inferred, and
the learned cell representation can be used for clustering of spatial
domains. It is worth noting that most GNN-based methods rely on the
expression of hundreds or thousands of genes as input features, which is
more suitable for transcriptome-wide spatial techniques148. Some newly
developed methods are applicable to data with fewer features such as
spatial proteomics. SPACE-GM149 uses GNN to model TME as a local
subgraph, while CellCharter150 and CytoCommunity148 are both recently
reported technology-agnostic and highly scalable methods. Cyto-
Community enables both unsupervised and supervised learning-based
identification of condition-specific spatial domains in transcriptomic or
proteomic datasets of various spatial platforms148, while CellCharter uses
another deep learning method, variational autoencoder, for feature
encoding150.

Other methods. The key innovations of these methods often come
before the final unsupervised clustering step. For example, ClusterMap151

jointly clusters the physical density and gene identity of RNAmolecules,
bypassing the need for cell segmentation by employing density peak
clustering to delineate nuclear boundaries. stLearn132 uses spatial mor-
phological gene expression to denoise and interpolate the data. However,
this approach does require the user to provide histological information,
such as H&E images. MULTILAYER152 takes a unique perspective and
considers spatial gene expression patterns as images that can be seg-
mented. It constructs a graphwhere nodes represent overexpressed genes
and edges reflect spatial co-expression, following the Louvain algorithm,
which provides the userwith a ranked list of spatially correlated genes and
their associated expression patterns. UTAG153 uses message passing to
combine a user-provided feature matrix (molecular information or
morphological features) with spatial location information, and then
clusters this feature. This approach can be applied to a variety of imaging
data with single-cell resolution. Finally, lisaClust154 models each seg-
mented cell as a multi-type Poisson point process, quantifying the spatial
relationships between cell types using K and L functions. Local indicators
of spatial association (LISA) curves are then calculated for each cell and
cell type to reflect how clustered or dispersed they are in space, and finally
a clustering algorithm is applied to assign regional labels.

Barcode-based spatial techniques (such as 10XVisium)usually capture
more features, while imaging-based methods (such as MERFISH) achieve
higher spatial resolution, so the performance of existing spatial domain
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algorithms may vary on different spatial platforms. A recent study sum-
marized the applicability of 11 spatial clusteringmethods in the 10XVisium
dataset and the MERFISH dataset using multiple indicators139. In general,
non-spatial clustering methods represented by Louvain and Leiden do not
perform well139. On the 10X Visium dataset, GraphST, BASS143 and
BayesSpace142 show the expected hierarchical structure and retain good
clustering accuracy.OntheMERFISHdataset, BASS143 andSpaceFlow145 are
more recommended. In addition, downstream specific analysis tasks will
also change the preference of method selection. If a more detailed tissue
structure is needed, SpaceFlow145, which has good normalized mutual
information (NMI) andhomogeneity scores,might bepreferred in imaging-
based spatial datasets; if smoother boundaries are needed, BASS143, with a
better continuity score, may be the better choice. A post-hoc spatial
smoothing step also improve the prediction results of the spatial domain139.

It is important for tumor biologists to note that most datasets used for
algorithm development and benchmarking are healthy tissues with regular
structures such as mouse brain and embryo instead of complex tumor
tissues. The performance of most algorithms seems to be biased towards
commonly useddatasets, while the less-studied heterogeneous datasets such
as breast cancers have the lower evaluation index140. In addition, even the
higher-performing BASS143 algorithm showed huge heterogeneity in dif-
ferent slides of the same breast cancer dataset, with the average Adjusted
Rand Index range from 0.02 to 0.53140. These findings highlight that more
comprehensive tool evaluation and algorithmic improvements are neces-
sary, with a particular focus on tumor datasets, to ensure the robustness and
generalizability of spatial analysismethods across awider range of biological
contexts.

Clinical significance of spatial signatures
With the advancement of spatial experimental technologies and computa-
tional methods, an increasing number of studies have elucidated the spatial

signatures that influence oncogenesis and progression at different scales,
promoting adeeperunderstandingof location-specific factors that influence
pathogenesis and progression at different scales. And researchers are
increasingly able to leverage this knowledge at the patient level to suggest
improved treatment options (Supplementary Table 1).

Survival related spatial signatures
The heterogeneous tumor cells may recruit other cells to form various local
micro-environment that determine patient survival. In PDAC, three recurrent
subTMEphenotypeshavebeen identifiedbasedonhistological features suchas
the ratio of cellular to acellular components and stromal cell morphology:
abandoned, reactive, and intermediate19. These subTMEs exhibit regional
immune heterogeneity and distinct states of CAFs. In addition, different
subTMEs may co-occur within the same tumor in a spatially restricted
manner, and this coexisting heterogeneity is more closely associated with
patient survival than the subTME type itself 19. In HCC patients, normal-like
compartments,wherebloodvessels are intact and tumorcells have lessobvious
malignant features, are associated with a better prognosis (Fig. 2A)107. Corre-
spondingly, proliferative tumor compartments are associated with a worse
prognosis, with potentially irregular vascularization, highly activated cell cycle,
MYC activity, hypoxia signaling and inflammation signaling94,107 (Fig. 2B, C).
Notably, hypoxia is usually caused by the rapid proliferation of cancer cells,
coupled with abnormal structure and function of tumor blood vessels, which
reduces the oxygen supply to certain areas within solid tumors155 (Fig. 2D).

For spatial studies of nonparenchymal cells, CAFandTcells are among
the most important types (Fig. 2E–H). In non-small cell lung cancer, IMC
data have identified 11 spatially distinct CAF phenotypes, each associated
with different prognostic patient groups156. In breast cancer, the stromal
niche is associated with tumor phenotype, but only one poorly cohesive
stromal niche, containing proliferative vimentin-producing fibroblasts, is
independently associated with poor disease-free and overall survival (Fig.
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2H)157. As for immune phenotypes, the inflamed, altered, and desert phe-
notype are directly defined by the spatial distribution of CD8+ T cells (Fig.
2E, F and G)73,158. Among them, the inflamed phenotype of patients with
non-small cell lung cancer is an independent prognostic factor for disease-
specific survival and recurrence time158 (Fig. 2E)

Furthermore, some CNs composed of multiple cells co-localized with
T cells have also been shown to shape anti-tumor immunity and could
predict better clinical behavior, such as pan-immune CNs, T cell infiltration
CNs and lymphoid-enriched CNs95,157. In contrast, a microenvironmental
community characterized by vascularization with T cell involvement is
associated with increased risk of death95. In addition to T cells, CNs com-
posed of other immune cells also affect prognosis. For instance, CNs com-
posed of M1-like MDMs, neutrophils, and M1-like microglia, is associated
with increased survival in patients with high-grade glioma108, although the
frequency of M1-like MDMs is not associated with OS, highlighting the
importance of spatial structure108. However, the relationship between these
CNs and survival is not uniform and may need to be explored separately in
different histological subtypes. For example, in patients with lung adeno-
carcinoma, lymphoid-enriched CNs are less in the lepidic tumors with a
good prognosis, but more common in the solid tumor subtype. In another
acinar tumor, more B-cell-enriched CNs indicate better survival95.

Spatial biomarkers of immunotherapy
Although previous omics studies have found many biomarkers of immu-
notherapy, such as mutation burden and PD-L1 expression, spatial mea-
surements further reveal spatial biomarkers that predict therapeutic efficacy
and explain the mechanism of immune escape. For example, multiplex
immunohistochemistry (mIHC) or multiplex immunofluorescence (mIF)
indicates response prediction for immunotherapy by measuring CD8+ cell
density within intratumoral/peritumoral compartments or co-expression
markers indicative of T cell activation159. CODEX further quantify finer
spatial distributions of cell subtypes with more proteins. For example, in
patients with cutaneous T-cell lymphoma treated with pembrolizumab, the
spatial distribution of effector PD-1+CD4+T cells and immunosuppressive
Tregs differs between responders and non-responders160.

Meanwhile, the spatial relationship between immune cells and cancer
cells is also related to the response to immunotherapy. Theproximity of PD-

1 on T cells to PD-L1 on tumor cells can be measured by mIHC or mIF,
which has potential advantages over tumor mutational burden or PD-L1
expression159. Similarly, the proportion of proliferating CD8+TCF1+T cells
andMHC II+ cancer cells are the dominant predictor of treatment response
in a randomized neoadjuvant immune checkpoint blockade trial for TNBC,
followed by spatial interactions between cancer cells-B cells and cancer cells-
granzyme B+ T cells161. In melanoma patients who underwent adoptive cell
therapy with ex vivo expanded autologous TILs, more interactions between
CD8+ or CD8+ PD-1+ TILs and CD11c+ cells are observed within tumor
islets and stromal regions in responding patients compared with non-
responders162. In advanced RCC patients, the spatial co-expression of the
ligand-receptor pair COL4A1 and ITGAV is significantly increased after
immunotherapy compared with immunotherapy naïve tumors, helping to
elucidate the mechanisms of immune response163.

Multicellular spatial organization also provides additional insights into
immunotherapy. TLS is a promising predictive biomarker associated with
response to immune therapies, as it forms discrete TME that provide sites
for antigen presentation and cytokine-mediated signaling (Fig. 1B)93,164–166.
In RCC, characterization of distinct TLSs suggests that TLS-positive tumors
exhibit a high frequency of IgG-producing plasma cells and are associated
with improved outcomes with immune therapy167. Additionally, some
newly defined immune phenotypes such as “inflamed”20,21 or “immunity
hub”168, are also strongly associatedwith therapy response. InTNBC,whole-
slide staining for CD8 defines three spatial immunophenotypes: inflamed
phenotype has the best prognosis, excluded phenotypes intermediate and
the ignored phenotypes have the worst prognosis21. Further transcriptome
analyses demonstrates that these immunophenotypes are characterized by
different modes of T cell immune-evasion21.

In summary, spatial signatures have optimized previous biomarkers
for predicting therapeutic efficacy, and continued spatial analysis that pre-
serves tissue’s microanatomical structure holds promise to improve
response prediction factors and provide deeper insights into the mechan-
isms of response.

Current challenges and future researches
While spatial profiling techniques have provided novel insights, several
challenges remain for the field (Fig. 3).

Fig. 3 |Key challenges in studying spatial signatures
in cancer biology.

How do organisms construct
functional spatial structures

through molecular programs?

How can we
comprehensively
characterize the

repertoire of recurring
spatial architectures?

How can we
sensitively capture the

spatial attributes of
rare population behavior
at sufficient resolution? 

How do we
rigorously establish

the causal impacts on
clinical implications? 

Spatial
Signatures

in cancer biology

Biological mechanism

Clinical transformationPh
en

om
en

on
 d

is
co

ve
ry

Ph
en

om
en

on
 d

is
co

ve
ry

Data

Time

https://doi.org/10.1038/s41698-025-00857-1 Review article

npj Precision Oncology |            (2025) 9:68 9

www.nature.com/npjprecisiononcology


First, the molecular mechanisms of spatial organization have not yet
been fully revealed. The spatial characteristics of biological tissue structures
often reflect their intrinsic molecular biological processes, especially some
recurring spatial organizations. This is mainly because it is difficult to fully
capture the spatial changes of different biological molecules (such as tran-
scripts, proteins, phosphorylated proteins, metabolites, etc.) due to sensi-
tivity limitations. Fortunately, emerging multi-omics spatial analysis
technologies have realized joint profiling of the epigenome and tran-
scriptome by co-sequencing chromatin accessibility and gene expression, or
histone modifications to provide multimodal data to reveal spatial reg-
ulatory mechanisms169,170. In addition, computational methods for spatial
pseudo-time have also made certain progress, allowing researchers to infer
dynamic molecular processes from spatial profiles at a single time
point132,171. Further, in order to verify the causal relationship, high-
throughput perturbation experiments172 and computer virtual
perturbation173 become powerful tools174. In the future, unbiased genome-
wide joint determination of epigenome and transcriptome on the same
tissue section at the single-cell resolution needs to be achieved, and FFPE
samples may be better utilized. At the same time, given the obvious het-
erogeneity in the spatial organization of different biological systems, com-
putational tools that can comprehensively analyze complex patterns in
spatial data still need to be developed in the future. In addition, intratumor
heterogeneitymay affect the validity of tissuemicroarrays (TMAs)175. Some
studies suggest that, in most cases, two 0.6 mm tissue cores are sufficient to
represent the staining observed in the entire tissue section176–178. However,
TMAs should still be used with caution for certain biomarkers with
location-dependent expression, such as hypoxia markers179–181. A potential
solution is to conduct large TMA studies to reduce sampling error by
increasing the cohort size or to use heterogeneous markers, such as the
proliferation marker Ki-67 or tumor microvessel density, to examine
intratumor heterogeneity178.

Second, some recurrent tissue motifs across multiple datasets or
common patterns of spatial signatures have not been fully revealed.
Although the mechanisms and processes of disease occurrence may vary
from individual to individual, there are certain commonalities in the spatial
arrangement of key cell types and communities in tissues. This shift from
individualization to groupization is of great significance for our under-
standing of the complexity of biological systems.However, due to the cost of
spatial technology,most spatial analyses are still focusedon specific samples,
mainly reflecting the characteristics of tissue structure in specific situations.
At the same time, data may show obvious batch effects182, which refers to
technical biases. These factors have the potential to obscure genuine bio-
logical signals, thereby complicating data interpretation and integration.
Currently, there are some methods that integrate multiple datasets (e.g.,
SCGP-Extension183 and STAligner184). Most integration methods are ori-
ginally designed to learn embeddings across multiple slices, and it is still
difficult to determinewhich tool has the best overall clustering performance
among all pairs after integration140. Using TMAs can alleviate the cost and
batch issues to some extent. One of the benefits is the availability of FFPE
archival tissues, and inter-batch variability is reduced by analyzing all
samples simultaneously. This approach is important for quality assurance
and is cost-effective in large cohort experiments178. In the future, more
project cooperations anddatadisclosureneed tobe advocated to support the
establishment of tissue spatial data atlas. At the same time, more powerful
integration tools are still needed in the future. They need to show good
scalability for large datasets, merge data from various sources or conditions
(e.g., different anatomic regions or development stages), enhance data
robustness and reveal common patterns that are not apparent in an indi-
vidual dataset140.

Third, it remains difficult to comprehensively analyze rare cell popu-
lations. For spatial omics technologies with limited resolution, the locations
of rare cells are inferred by deconvolution algorithms or scoring of signature
genes, but the results often contain a large amount of noise. Althoughmore
and more single-cell level spatial technologies are emerging, they can only
capture dozens to hundreds of molecules per cell and may not cover the

interesting rare cell type. In cases with limited prior knowledge of rare cell
type, researchers may need to prioritize whole-slide capture as a primary
approach, since the core region of the TMA may not sufficiently capture
these cells, potentially compromising the characterization of statistical
effects and spatial distribution. In future, advanced spatial omics techniques
and matching algorithms may be able to better mine rare cell subtypes.

A fourth challenge is that the relationships between spatial features and
underlying biological functions or clinical implications remain unclear. A
large numberof studies have found that different cell communities or spatial
distribution characteristics in tumor tissues are significantly correlated with
clinical prognosis, indicating that spatial features may have an important
impact on the occurrence and development of tumors. However, the causal
relationship between spatial features and tumor biology has not been
accurately determined. In the future, the spatial characteristics found by
different computational methods need further verification, which requires
more benchmarking researches on different approaches. And larger sample
cohorts can also help discover new clinically significant associations by
improving statistical power. Dynamic time series and perturbation experi-
ments to track changes in spatial features during tumor progression are also
possible ways to solve this problem. By artificially regulating the impact of
these features on tumor, the causal relationship between them can be more
clearly determined.

In summary, this review comprehensively summarizes the recent
advances in the study of spatial signatures. By leveraging computational
methods, these spatially resolved molecular and cellular signatures char-
acterized across multiple scales have revealed unprecedented insights
into TME.
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